Answer:
Number of moles = 10.6 mol
Explanation:
Given data:
Molar mass of H = 1.008 g/mol
Molar mass of C = 12.01 g/mol
Molar mass of O = 16.00 g/mol
Mass of citric acid = 2.03 kg (2.03×1000 = 2030 g)
Number of moles of citric acid = ?
Solution:
Formula:
Number of moles = mass/molar mass
Now we will calculate the molar mass of citric acid:
C₆H₈O₇ = (12.01× 6) + (1.008×8) + (16.00×7)
C₆H₈O₇ = 72.06 + 8.064+112
C₆H₈O₇ = 192.124g/mol
Number of moles = 2030 g/ 192.124g/mol
Number of moles = 10.6 mol
Answer:
B. The effects of warmed water on aquatic life
Explanation:
quizizz
Answer:
The answer is
<h2>720 Joules</h2>
Explanation:
The kinetic energy of a body can be found by using the formula
<h3>

</h3>
where
m is the mass
v is the velocity / speed
From the question
mass = 10 kg
velocity = 12 m/s
Substitute the values into the above formula and solve
That's
<h3>

</h3>
We have the final answer as
<h3>720 Joules</h3>
Hope this helps you
Using electronegativity difference is a good guide to the ionic/ covalent nature. Large differences indicate greater ionic character, small differences more covalent character. The larger the difference in electronegativity the more ionic properties a bond is said to have. The smaller the difference in electronegativity the more covalent properties a bond is said to have.
Ionic bonding is formed through electrostatic attraction between a cation and anion. Foe example, Sodium fluoride has ionic bonding because it is composed by sodium and Fluorine (a non metal). On the other hand, covalent bonding is characterized by atoms sharing pairs of electrons. For example; methane has covalent bonding; carbon has 4 valence electrons and hydrogen has 1; when they bond they have a total of 8 electrons and satisfies the octet rule.