Answer:
10 weeks
Step-by-step explanation:
<h2><u>A = 4</u> is the correct answer!</h2><h3></h3><h3>3 x ? = 12</h3><h3>12 ÷ 3 = 4</h3><h3>so</h3><h3>1 x 4 = 4</h3><h3 /><h3>You're wrong. It is not six.</h3><h3>By the way, it's "one" not "won".</h3><h3>It was probably a mistake.</h3><h3>:)</h3><h3 /><h3><em>Please let me know if I am wrong.</em></h3>
The given plane,
, has normal vector
. Any plane parallel to this one has the same normal vector.
Let
be any point in the plane we want. The plane contains the point (1, 1, -1), so an arbitrary vector in this plane is
![\langle x,y,z\rangle - \langle 1,1,-1\rangle = \langle x-1, y-1, z+1 \rangle](https://tex.z-dn.net/?f=%5Clangle%20x%2Cy%2Cz%5Crangle%20-%20%5Clangle%201%2C1%2C-1%5Crangle%20%3D%20%5Clangle%20x-1%2C%20y-1%2C%20z%2B1%20%5Crangle)
and this is perpendicular to
.
So the equation of the plane is
![\langle x-1, y-1, z+1 \rangle \cdot \vec n = 0 \implies (x-1) - (y-1) + (z+1) = 0 \implies \boxed{x - y + z = -1}](https://tex.z-dn.net/?f=%5Clangle%20x-1%2C%20y-1%2C%20z%2B1%20%5Crangle%20%5Ccdot%20%5Cvec%20n%20%3D%200%20%5Cimplies%20%28x-1%29%20-%20%28y-1%29%20%2B%20%28z%2B1%29%20%3D%200%20%5Cimplies%20%5Cboxed%7Bx%20-%20y%20%2B%20z%20%3D%20-1%7D)
or equivalently,
![\boxed{-x + y - z = 1}](https://tex.z-dn.net/?f=%5Cboxed%7B-x%20%2B%20y%20-%20z%20%3D%201%7D)
<h3>
Answer: -16n-41</h3>
Work Shown:
2(-n-3) -7(5+2n)
2(-n)+2(-3) - 7(5)-7(2n) ... distribute
-2n - 6 - 35 - 14n
(-2n-14n) + (-6-35)
-16n - 41