Answer:
Yes it is possible
Explanation:
When two equal magnitude forces are acting on the rod in opposite direction
Then the net force on the system is always zero in that case
so we will have

now for the system net torque due to these forces is given by

here we know that
= distance of the forces from reference about which torque is measured
so here we can say that net force is zero on the system while torque is not zero
in all such case object will rotate about a fixed position with change angular speed
Answer:
The value of acceleration that accomplishes this is 8.61 ft/s² .
Explanation:
Given;
maximum distance to be traveled by the car when the brake is applied, d = 450 ft
initial velocity of the car, u = 60 mph = (1.467 x 60) = 88.02 ft/s
final velocity of the car when it stops, v = 0
Apply the following kinematic equation to solve for the deceleration of the car.
v² = u² + 2as
0 = 88.02² + (2 x 450)a
-900a = 7747.5204
a = -7747.5204 / 900
a = -8.61 ft/s²
|a| = 8.61 ft/s²
Therefore, the value of acceleration that accomplishes this is 8.61 ft/s² .
Answer:
a) the maximum transverse speed of a point on the string at an antinode is 5.9899 m/s
b) the maximum transverse speed of a point on the string at x = 0.075 m is 4.2338 m/s
Explanation:
Given the data in the question;
as the equation of standing wave on a string is fixed at both ends
y = 2AsinKx cosωt
but k = 2π/λ and ω = 2πf
λ = 4 × 0.150 = 0.6 m
and f = v/λ = 260 / 0.6 = 433.33 Hz
ω = 2πf = 2π × 433.33 = 2722.69
given that A = 2.20 mm = 2.2×10⁻³
so
= A × ω
= 2.2×10⁻³ × 2722.69 m/s
= 5.9899 m/s
therefore, the maximum transverse speed of a point on the string at an antinode is 5.9899 m/s
b)
A' = 2AsinKx
= 2.20sin( 2π/0.6 ( 0.075) rad )
= 2.20 sin( 0.7853 rad ) mm
= 2.20 × 0.706825 mm
A' = 1.555 mm = 1.555×10⁻³
so
= A' × ω
= 1.555×10⁻³ × 2722.69
= 4.2338 m/s
Therefore, the maximum transverse speed of a point on the string at x = 0.075 m is 4.2338 m/s
Answer:
Wrap it in cotton??? like alot of it?
<span>You should increase the distance between your car and the vehicle ahead when you are being tailgated by another driver.
Tailgated is a condition when the vehicle behind you is very close to you that there is no distance between your vehicle and the vehicle behind you. In that case you should increase distance from the vehicle ahead to avoid collision in any case. These days people were mostly in hurry and everyone want to go ahead, so tailgating is very common.</span>