The reaction would produce bubbles of gas.
We can prepare 3-5 test tubes of acid with increasing concentrations. Then, we add antacid tablets to each and note the time taken for the tablet to dissolve and stop producing bubbles. The lesser the time taken, the greater the rate of reaction.
Answer:
I don't fully understand what this is about...
Explanation:
sorry :(
The molar mass of the gas is 77.20 gm/mole.
Explanation:
The data given is:
P = 3.29 atm, V= 4.60 L T= 375 K mass of the gas = 37.96 grams
Using the ideal Gas Law will give the number of moles of the gas. The formula is
PV= nRT (where R = Universal Gas Constant 0.08206 L.atm/ K mole
Also number of moles is not given so applying the formula
n= mass ÷ molar mass of one mole of the gas.
n = m ÷ x ( x molar mass) ( m mass given)
Now putting the values in Ideal Gas Law equation
PV = m ÷ x RT
3.29 × 4.60 = 37.96/x × 0.08206 × 375
15.134 = 1168.1241 ÷ x
15.134x = 1168.1241
x = 1168.1241 ÷ 15.13
x = 77.20 gm/mol
If all the units in the formula are put will get cancel only grams/mole will be there. Molecular weight is given by gm/mole.
25/2 and 96/X
CROSS MULTIPLY.
2x=2,400.
divide by 2.
x=1,200.
you take the GIVEN MASS of an element, and you put it on top, the coefficient is what it’s over. i believe this is right