Answer:
The acceleration of the electron is 1.457 x 10¹⁵ m/s².
Explanation:
Given;
initial velocity of the emitted electron, u = 1.5 x 10⁵ m/s
distance traveled by the electron, d = 0.01 m
final velocity of the electron, v = 5.4 x 10⁶ m/s
The acceleration of the electron is calculated as;
v² = u² + 2ad
(5.4 x 10⁶)² = (1.5 x 10⁵)² + (2 x 0.01)a
(2 x 0.01)a = (5.4 x 10⁶)² - (1.5 x 10⁵)²
(2 x 0.01)a = 2.91375 x 10¹³

Therefore, the acceleration of the electron is 1.457 x 10¹⁵ m/s².
Answer:
displacement (x) = 0.003798 meters
Explanation:
from the fact that the string is hung vertically we can deduce that:
Total force acting on the mass = Fs (by spring) + Fg (by gravity)
<em>where</em>
Fs = k*x , x is the displacement..
Fg = m*g
then:
Ftot = m*a, <em>but a = 0 m/(s^2) because the mass becames stationary.</em>
Ftot = 0
Fs + Fg = 0
<em>by direction, take down as negative.</em>
Fs - Fg = 0
k*x = m*g
x = m*g/k = [(0.400)(9.8)]/(10.32)
= 0.3798 meters
Answer:
a. 900 J
b. 0.383
Explanation:
According to the question, the given data is as follows
Horizontal force = 150 N
Packing crate = 40.0 kg
Distance = 6.00 m
Based on the above information
a. The work done by the 150-N force is


= 900 J
b. Now the coefficient of kinetic friction between the crate and surface is


= .383
We simply applied the above formulas so that each one part could calculate
Answer:
Atmospheric pressure is the pressure exerted by the weight of the atmosphere.
Atmospheric Pressure = density of Mercury X acceleration due to gravity X height of column of the mercury
Answer:
Moc = -613.25 [lb*in]
Explanation:
Este problema se puede resolver mediante la mecánica vectorial, es decir se realizara un analisis de vectores.
Primero se calculara el momento de la fuerza F_AB con respecto al punto O, debemos recordar que el momento con respecto a un punto se define como el producto cruz de la distancia por la fuerza.
(producto cruz)
Necesitamos identificar los puntos:
O (0,0,0) [in]
A (12,0,0) [in]
B (0, 24,8) [in]
C (12,24,0) [in]
![r_{A/O}=(12,0,0) - (0,0,0)\\r_{A/O} = 12 i + 0j+0k [in]\\AB = (0,24,8) - (12,0,0)\\AB = -12i+24j+8k [in]\\[LAB]=\frac{-12i+24j+8k}{\sqrt{(12)^{2} +(24)^{2} +(8)^{2} } }\\ LAB=-\frac{3}{7} i+\frac{6}{7}j+\frac{2}{7}k](https://tex.z-dn.net/?f=r_%7BA%2FO%7D%3D%2812%2C0%2C0%29%20-%20%280%2C0%2C0%29%5C%5Cr_%7BA%2FO%7D%20%3D%2012%20i%20%2B%200j%2B0k%20%5Bin%5D%5C%5CAB%20%3D%20%280%2C24%2C8%29%20-%20%2812%2C0%2C0%29%5C%5CAB%20%3D%20-12i%2B24j%2B8k%20%5Bin%5D%5C%5C%5BLAB%5D%3D%5Cfrac%7B-12i%2B24j%2B8k%7D%7B%5Csqrt%7B%2812%29%5E%7B2%7D%20%2B%2824%29%5E%7B2%7D%20%2B%288%29%5E%7B2%7D%20%7D%20%7D%5C%5C%20LAB%3D-%5Cfrac%7B3%7D%7B7%7D%20i%2B%5Cfrac%7B6%7D%7B7%7Dj%2B%5Cfrac%7B2%7D%7B7%7Dk)
El ultimo vector calculado corresponde al vector unitario (magnitud = 1) de AB. El vector fuerza corresponderá al producto del vector unitario por la magnitud de la fuerza = 200 [lb].
![F_{AB}=-\frac{600}{7} i +\frac{1200}{7}j+\frac{400}{7} k [Lb]](https://tex.z-dn.net/?f=F_%7BAB%7D%3D-%5Cfrac%7B600%7D%7B7%7D%20i%20%2B%5Cfrac%7B1200%7D%7B7%7Dj%2B%5Cfrac%7B400%7D%7B7%7D%20k%20%5BLb%5D)
De esta manera realizando el producto cruz tenemos

![M_{O}=0i-685.7j+2057.1k [Lb*in]](https://tex.z-dn.net/?f=M_%7BO%7D%3D0i-685.7j%2B2057.1k%20%5BLb%2Ain%5D)
Para calcular el momento con respecto a la diagonal OC, necesitamos el vector unitario de esta diagonal.
![OC = (12,24,0)-(0,0,0)\\OC= 12i+24j+0k[Lb]\\LOC = \frac{12i+24j+0k}{\sqrt{(12)^{2} +(24)^{2} +(0)^{2} } } \\LOC=\frac{12}{\sqrt{720}}i+\frac{24}{\sqrt{720}}j +0k](https://tex.z-dn.net/?f=OC%20%3D%20%2812%2C24%2C0%29-%280%2C0%2C0%29%5C%5COC%3D%2012i%2B24j%2B0k%5BLb%5D%5C%5CLOC%20%3D%20%5Cfrac%7B12i%2B24j%2B0k%7D%7B%5Csqrt%7B%2812%29%5E%7B2%7D%20%2B%2824%29%5E%7B2%7D%20%2B%280%29%5E%7B2%7D%20%7D%20%7D%20%5C%5CLOC%3D%5Cfrac%7B12%7D%7B%5Csqrt%7B720%7D%7Di%2B%5Cfrac%7B24%7D%7B%5Csqrt%7B720%7D%7Dj%20%20%2B0k)
El vector con respecto al eje OC, es igual al producto punto del momento en el punto O por el vector unitario LOC
![M_{OC}=L_{OC}*M_{O}\\M_{OC}=(\frac{12}{\sqrt{720}}i +\frac{24}{\sqrt{720}} j+0k )* (0i-685.7j+2057.1k)\\M_{OC}= -613.32[Lb*in]](https://tex.z-dn.net/?f=M_%7BOC%7D%3DL_%7BOC%7D%2AM_%7BO%7D%5C%5CM_%7BOC%7D%3D%28%5Cfrac%7B12%7D%7B%5Csqrt%7B720%7D%7Di%20%2B%5Cfrac%7B24%7D%7B%5Csqrt%7B720%7D%7D%20j%2B0k%20%29%2A%20%280i-685.7j%2B2057.1k%29%5C%5CM_%7BOC%7D%3D%20-613.32%5BLb%2Ain%5D)