I would say the last option, since with an increase in temperature, water molecules will speed up.
Recall this kinematic equation:
a = 
This equation gives the acceleration of the object assuming it IS constant (the velocity changes at a uniform rate).
a is the acceleration.
Vi is the initial velocity.
Vf is the final velocity.
Δt is the amount of elapsed time.
Given values:
Vi = 0 m/s (the car starts at rest).
Vf = 25 m/s.
Δt = 10 s
Substitute the terms in the equation with the given values and solve for a:
a = 
<h3>a = 2.5 m/s²</h3>
Answer:
Rotating the loop until it is perpendicular to the field
Explanation:
Current is induced in a conductor when there is a change in magnetic flux.
The strength of the induced current in a wire loop moving through a magnetic field can be increased or decreased by the following methods:
By increasing the strength of the magnetic field there will be increased in the induced current. If the strength of the magnetic field is decreased then there is a decrease in induced current.
By increasing the speed of the wire there will be increased in the induced current. When the speed of the wire is decreased then there is a decrease in induced current.
By increasing the number of turns of the coil the strength of the induced current can be increased. when there is less number of turns in coils then there is a decrease in induced current.
Rotating the loop until it is perpendicular to the field will not increase the current induced in a wire loop moving through a magnetic field.
Therefore, the option is (c) is correct.
Without magnetic domains a magnet would have its magnetism. Magnetic domains are clusters of iron atoms that line up in the same direction when magnetized. When not magnetized the iron atoms scatter.