348.34 m/s. When Superman reaches the train, his final velocity will be 348.34 m/s.
To solve this problem, we are going to use the kinematics equations for constant aceleration. The key for this problem are the equations
and
where
is distance,
is the initial velocity,
is the final velocity,
is time, and
is aceleration.
Superman's initial velocity is
, and he will have to cover a distance d = 850m in a time t = 4.22s. Since we know
,
and
, we have to find the aceleration
in order to find
.
From the equation
we have to clear
, getting the equation as follows:
.
Substituting the values:

To find
we use the equation
.
Substituting the values:

Cocking your head would be most useful for detecting the LOCATION of a sound.
The calculated coefficient of kinetic friction is 0.33125.'
The rate of kinetic friction the friction force to normal force ratio experienced by a body moving on a dry, uneven surface is known as k. The friction coefficient is the ratio of the normal force pressing two surfaces together to the frictional force preventing motion between them. Typically, it is represented by the Greek letter mu (). In terms of math, is equal to F/N, where F stands for frictional force and N for normal force.
given mass of the block=10 kg
spring constant k= 2250 Nm
now according to principal of conservation of energy we observe,
the energy possessed by the block initially is reduced by the friction between the points B and C and rest is used up in work done by the spring.
mgh= μ (mgl) +1/2 kx²
10 x 10 x 3= μ(600) +(1125) (0.09)
μ(600) =300 - 101.25
μ = 198.75÷600
μ =0.33125
The complete question is- A 10.0−kg block is released from rest at point A in Fig The track is frictionless except for the portion between point B and C, which has a length of 6.00m the block travels down the track, hits a spring of force constant 2250N/m, and compresses the spring 0.300m form its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between point Band (C)
Learn more about kinetic friction here-
brainly.com/question/13754413
#SPJ4
Answer:
Buoyancy force and surface tension are the reactions that take places between soap and pepper experiment.
Explanation:
Surface tension:
The surface tension of a liquid is the tendency of liquid surfaces to resist an external force due to the cohesive nature of its molecules.
The pepper and soap experiment helps you to understand buoyancy force and surface tension.
Reaction between the pepper and soap is as following.
- The pepper flakes float because of buoyancy force. It makes the pepper flakes to move away to the edge of the plate.
- This happens because the liquid dish soap changes the surface tension of water.
- And The pepper flakes are so light, it floats on the water surface due to surface tension.
- when we add soap, it breaks the surface tension of water, but the water resists it. So they pull away from the soap along with the pepper flakes.
- This pushes the pepper away from your soap covered finger.
This is the reaction that take places between soap and pepper experiment.
Learn more about Pepper and soap experiment here:
<u>brainly.com/question/9614070</u>
<u>#SPJ4</u>
Answer:
The electric field is
Explanation:
The force
on a charge
in an electric field
is given by
,
which can be rearranged to give

Now, the force on the electron is
, and its charge is
; therefore,

