Answer:
because speed is the modulus of velocity which is a vector
the velocity to be zero it must be a round trip
Explanation:
This is because speed is the modulus of velocity which is a vector.
For the velocity to be zero it must be a round trip, therefore the resulting vector zero
On the other hand, the speed of the module is the same in both directions
A longitudinal wave transports energy through the medium without permanently transporting matter.
Hope this helps :D
Answer:
(a) 
(b) 
(c) 
Explanation:
(a) The total mechanical energy of the system is conserved.

(b) The conservation of energy states

(c) As explained in part (a) the total mechanical energy of the system is equal to the initial kinetic energy, since the potential energy of the system at that point is zero.

The strength of chemical bonds would be the best answer to this question. Hardness is indirectly related to the strength of chemical bonds. Hardness is the resistance from the destruction of an object itself from a material. Hardness does not need to strength of chemical bonds in order to have this resistance.
Answer and Explanation: No, the explanation is not plausible. The puck sliding on the ice is an example of the <u>Principle</u> <u>of</u> <u>Conservation</u> <u>of</u> <u>Energy</u>, which can be enunciated as "total energy of a system is constant. It can be changed or transferred but the total is always the same".
When a player hit the pluck, it starts to move, gaining kinetic energy (K). As it goes up a ramp, kinetic energy decreases and potential energy (P) increases until it reaches its maximum. When potential energy is maximum, kinetic energy is zero and vice-versa.
So, at the beginning of the movement the puck only has kinetic energy. At the end, it gains potential energy until its maximum.
The representation is as followed:



As we noticed, mass of the object can be cancelled from the equation, making height be:

So, the height the puck reaches depends on velocity and acceleration due to gravity, not mass of the puck.