Answer:
There are 12 atoms in the compound
The mass of sodium chloride used <u>was 1.17 grams</u><u>.</u>
The mole fraction can be calculated by way of dividing the number of moles of 1 factor of an answer via the full variety of moles of all the additives of an answer. it is mentioned that the sum of the mole fraction of all the components inside the solution has to be the same as one.
mass of NaCl given = 64.9 g
mole = mass/molar mass
= 64.9 / 58.5
=<u> 1.109</u>
a mole fraction of water = 0.980
mole fraction of NaCl = 1 - 0.980
= <u>0.02</u>
1 mole of NaCl = 58.5
mass of NaCl = 58.5 × 0.02
=<u> 1.17 gram</u>
Mole Fraction describes the range of molecules contained within one aspect divided through the whole range of molecules in a given combination. it's miles quite beneficial whilst two reactive-natured components are mixed collectively.
Learn more about mole fraction here:-brainly.com/question/29111190
#SPJ4
Remember, OIL RIG
Oxygen Is Loss of electrons
Reduction Is Gain of electrons
If something goes from + to - then it has gained electrons
If something goes from neutral to - it has gained electrons
If it goes from - to + is loses electrons
If it goes from neutral to + it loses electrons
If something is oxidised, it is a reducing agent
If something is reduced, it is an oxidising agent
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
A standard solution is a solution (in this case sodium hydroxide) whose concentration (molarity) is known very precisely. <span>The molarity of the sodium hydroxide solution cannot be determined accurately because s</span>olid sodium hydroxide is highly hygroscopic (absorbs water from the air) and cannot be accurately weighed. Sodium hydroxide form sodium carbonate because it absorbs carbon
dioxide from the air.
Answer:
CaCl₂ > CH₃OH = LiCl > C₆H₁₂O₆
Explanation:
The osmotic pressure of a compound is calculated using the following expression:
π = MRT (1)
This expression is used when the substance is nonelectrolyte. If the solution is electrolyte solution then we need to count the van't hoff factor into the expression so:
π = MRTi (2)
Now, we have 4 solutions here, only two of them are electrolyte solution, this means that these solutions can be dissociated into separate ions. These solutions are LiCl and CaCl₂. It can be shown in the following reactions:
LiCl -------> Li⁺ + Cl⁻ 2 ions (i = 2)
CaCl₂ ---------> Ca²⁺ + 2Cl⁻ 3 ions (i = 3)
The methanol (CH₃OH) and glucose (C₆H₁₂O₆) are non electrolyte solutions, therefore they are not dissociated. So, let's use expression (1) for methanol and glucose, and expression (2) for the salts:
CaCl₂: π = 1 * 3 * RT = 3RT
CH₃OH: π = 2 * RT = 2RT
C₆H₁₂O₆: π = 1 * RT = 1RT
LiCl: π = 1 * 2 * RT = 2RT
Finally with these results we can conclude that the decreasing order of these solutions according to their osmotic pressures are:
<h2>
CaCl₂ > CH₃OH = LiCl > C₆H₁₂O₆</h2>