Answer:
a) v = 19,149.6 m/s
b) f = 95%
c) t = 346.5min
Explanation:
First put all values in metric units:

The equation of motion you need is:
where
is the final velocity, a is acceleration and t is time in hours.
Since the spaceship starts from 0 velocity:

Next, you need to calculate the distances traveled on each interval, considering that both starting and final intervals travel the same distance because the acceleration and time are equal. For this part you need the next motion equation:

solving for first and last interval:
Since the spaceship starts and finish with 0 velocity:

Then the ship traveled
at constant speed, which means that it traveled:

Which in percentage is 95% of the trip.
to calculate total time you need to calculate the time used during constant speed:

That added to the other interval times:

1) 12 cm
2) 3 N
Explanation:
1)
The relationship between force and elongation in a spring is given by Hooke's law:

where
F is the force applied
k is the spring constant
x is the elongation
For the spring in this problem, at the beginning we have:


So the spring constant is

Later, the force is tripled, so the new force is

Therefore, the new elongation is

2)
In this second problem, we know that the elongation of the spring now is

From part a), we know that the spring constant is

Therefore, we can use the following equation to find the force:

And substituting k and x, we find:

So, the force to produce an elongation of 6 cm must be 3 N.
Answer:
The <u>nucleus</u> is the core of an atom.
Step-by-step explanation:
That's just how it is.
Answer:
A radiator emitting warm air and drawing in cool air is an example of convection current
Explanation:
I am guessing you meant "A radiator emitting warm air and drawing in cool air'
Answer:
During heat flow, much of the energy is dissipated and cannot be used for useful work.
Explanation:
Which of the following statements is true?
During heat flow, much of the energy is lost.
During heat flow, energy is converted to matter.
During heat flow, much of the energy is dissipated and cannot be used for useful work.