1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elza [17]
2 years ago
14

Earth completes one full ____ on its axis every 24 hours

Engineering
2 answers:
mars1129 [50]2 years ago
7 0

Answer:

rotation

Explanation:

I just answered this!

gayaneshka [121]2 years ago
5 0
Rotation. i hope this helped:)
You might be interested in
An alloy is evaluated for potential creep deformation in a short-term laboratory experiment. The creep rate is found to be 1% pe
LenaWriter [7]

Answer:

a) Q = 251.758 kJ/mol

b) creep rate is    = 1.751 \times 10^{-5} \% per hr

Explanation:

we know Arrhenius expression is given as

\dot \epsilon =Ce^{\frac{-Q}{RT}

where

Q is activation energy

C is pre- exponential constant

At 700 degree C creep rate is\dot \epsilon = 5.5\times 10^{-2}% per hr

At 800 degree C  creep rate is\dot \epsilon = 1% per hr

activation energy for creep is \frac{\epsilon_{800}}{\epsilon_{700}} = = \frac{C\times e^{\frac{-Q}{R(800+273)}}}{C\times e^{\frac{-Q}{R(700+273)}}}

\frac{1\%}{5.5 \times 10^{-2}\%} = e^{[\frac{-Q}{R(800+273)}] -[\frac{-Q}{R(800+273)}]}

\frac{0.01}{5.5\times 10^{-4}} = ln [e^{\frac{Q}{8.314}[\frac{1}{1073} - \frac{1}{973}]}]

solving for Q we get

Q = 251.758 kJ/mol

b) creep rate at 500 degree C

we know

C = \epsilon e^{\frac{Q}{RT}}

    =- 1\% e{\frac{251758}{8.314(500+273}} = 1.804 \times 10^{12} \% per hr

\epsilon_{500} = C e^{\frac{Q}{RT}}

                         = 1.804 \times 10^{12}  e{\frac{251758}{8.314(500+273}}

                         = 1.751 \times 10^{-5} \% per hr

4 0
3 years ago
Applications of fleming hand rule
Eva8 [605]

Answer:

Fleming hand rule represents the direction of current in a generator's windings and induced current as a conductor is attached to a circuit such that it moves in a magnetic field.

Explanation:

Fleming hand rule represents the direction of current in a generator's windings and induced current as a conductor is attached to a circuit such that it moves in a magnetic field.

Fleming hand rule is used in the case of electric motors and electric generators.

Fleming hand rule is used to determine the following:

1. Direction of torque

2. Angular velocity

3. Angular acceleration

4 0
3 years ago
How can we calculate the speed of the output gear in a simple gear train? Explain with the help of an example.
Snowcat [4.5K]

Answer:

N_3=\dfrac{T_1}{T_3}N_1

Explanation:

In the diagram there three gears in which gear 1 is input gear ,gear 2 is idle gear and gear 3 is out put gear.

Lets take

Speed\ of\ gear 1=N_1

Number\ of\ teeth\ of\ gear 1=T_1

Speed\ of\ gear 3=N_3

Number\ of\ teeth\ of\ gear 3=T_3

All external matting gears will rotates in opposite direction with respect to each other.

So the speed of gear third can be given as follows

\dfrac{T_1}{T_3}=\dfrac{N_3}{N_1}

N_3=\dfrac{T_1}{T_3}N_1

3 0
3 years ago
(35-39) A student travels on a school bus in the middle of winter from home to school. The school bus temperature is 68.0° F. Th
arlik [135]

Answer:

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

Explanation:

From Heat Transfer we determine that heat transfer rate due to electromagnetic radiation (\dot Q), measured in BTU per hour, is represented by this formula:

\dot Q = \epsilon\cdot A\cdot \sigma \cdot (T_{s}^{4}-T_{b}^{4}) (1)

Where:

\epsilon - Emissivity, dimensionless.

A - Surface area of the student, measured in square feet.

\sigma - Stefan-Boltzmann constant, measured in BTU per hour-square feet-quartic Rankine.

T_{s} - Temperature of the student, measured in Rankine.

T_{b} - Temperature of the bus, measured in Rankine.

If we know that \epsilon = 0.90, A = 16.188\,ft^{2}, \sigma = 1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}}, T_{s} = 554.07\,R and T_{b} = 527.67\,R, then the heat transfer rate due to electromagnetic radiation is:

\dot Q = (0.90)\cdot (16.188\,ft^{2})\cdot \left(1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}} \right)\cdot [(554.07\,R)^{4}-(527.67\,R)^{4}]

\dot Q = 417.492\,\frac{BTU}{h}

Under the consideration of steady heat transfer we find that the net energy transfer from the student's body during the 20 min-ride to school is:

Q = \dot Q \cdot \Delta t (2)

Where \Delta t is the heat transfer time, measured in hours.

If we know that \dot Q = 417.492\,\frac{BTU}{h} and \Delta t = \frac{1}{3}\,h, then the net energy transfer is:

Q = \left(417.492\,\frac{BTU}{h} \right)\cdot \left(\frac{1}{3}\,h \right)

Q = 139.164\,BTU

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

7 0
2 years ago
What is the gear ratio of the given train
Olin [163]

Answer:

1/4

Explanation:

.......................

7 0
2 years ago
Other questions:
  • Given int variables k and total that have already been declared, use a do...while loop to compute the sum of the squares of the
    15·1 answer
  • A steam pipe passes through a chemical plant, where wind passes in cross-flow over the outside of the pipe. The steam is saturat
    13·1 answer
  • Create a Python program that will produce the following output:
    7·1 answer
  • Carbon dioxide (CO2) expands isothermally at steady state with no irreversibilities through a turbine from 10 bar, 500 K to 2 ba
    15·1 answer
  • When could you use the engineering design process in your own life?
    9·1 answer
  • Which battery produces more volts per cell, maintenance type or maintenance free ?
    6·1 answer
  • Which of the following is an essential component of reinforced concrete?
    9·1 answer
  • List six clues that indicates that you are approaching an intersection
    10·1 answer
  • A parallel circuit has a resistance of 280 and an inductive reactance of 360 02. What's this circuit's impedance?
    6·1 answer
  • 8. If you push a 2000 N weight up a ramp with 400 N of force and you raise the weight 1 meter,
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!