Answer: 5 is the molarity
Explanation:
The molarity formula is moles over liters and that in your case is 2.50 moles divided by .500 L which results in 5 which is your answear hope this helped god bless
Answer:
The correct answer is option a.
Explanation:
Diffusion flux is defined as movement of mas of atoms diffusing through the unit area in per unit time.It measured in (
).

J = diffusion flux
A = Unit area A through which atoms moves.
M = mass of atoms passes in t interval of time.
Electrical engineers are the scientists that study the production of electricity more efficient.
<h3>
Which type of scientist would study how electricity could be produced more efficiently?</h3>
Electrical engineers are the type of scientist that would most likely study how electricity could be produced more efficiently because they produced new technologies which are cost efficient as well as produce high amount of electricity.
So we can conclude that electrical engineers are the scientists that study the production of electricity more efficient.
Learn more about electricity here: brainly.com/question/776932
#SPJ1
<u>Answer:</u> The amount of heat released when 0.211 moles of
reacts is 554.8 kJ
<u>Explanation:</u>
The chemical equation for the reaction of
with oxygen gas follows:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(5\times \Delta H_f_{(B_2O_3(s))})+(9\times \Delta H_f_{(H_2O(l))})]-[(2\times \Delta H_f_{(B_5H_9(l))})+(12\times \Delta H_f_{(O_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%285%5Ctimes%20%5CDelta%20H_f_%7B%28B_2O_3%28s%29%29%7D%29%2B%289%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28l%29%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28B_5H_9%28l%29%29%7D%29%2B%2812%5Ctimes%20%5CDelta%20H_f_%7B%28O_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(2\times (-1272))+(9\times (-285.4))]-[(2\times (73.2))+(12\times (0))]\\\\\Delta H_{rxn}=-5259kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%5Ctimes%20%28-1272%29%29%2B%289%5Ctimes%20%28-285.4%29%29%5D-%5B%282%5Ctimes%20%2873.2%29%29%2B%2812%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-5259kJ)
To calculate the amount of heat released for the given amount of
, we use unitary method, we get:
When 2 moles of
reacts, the amount of heat released is 5259 kJ
So, when 0.211 moles of
will react, the amount of heat released will be = 
Hence, the amount of heat released when 0.211 moles of
reacts is 554.8 kJ