Answer: An acid is defined with having more [H₃O+] ions, and a base is defined with having more [OH-] ions. On the pH scale, an acid has a lower pH and a base has a higher pH. With this being said, the lower the pH, the more [H₃O+] ions are present and the higher the pH, the more [OH-] ions are present.
Explanation:
I hope this helps!! Pls give brainliest!! :)
Answer:
24g of NaOH are required
Explanation:
Molarity, M, is an unit of concentration widely used in chemistry defined as the ratio between moles of solute (In this case, NaOH), and volume of solution in liters.
We can find the moles of NaOH and its mass with the volume and desired concentration as follows:
<em>Moles NaOH:</em>
400.0mL = 0.400L * (1.50mol / L) = 0.600 moles NaOH
<em>Mass NaOH -Molar mass: 40.0g/mol-:</em>
0.600 moles * (40.0g / mol) =
<h3>24g of NaOH are required</h3>
Answer:
E) All of the above.
Explanation:
Hello,
Since the acidic nature of the HCl implies its corrosiveness, when it is in contact with the skin and eyes the burning starts immediately, so gloves and goggles must be worn. Next, the fuming hydrochloric acid (37% by mass) is volatile so it gives off even when dissolved into water, so it must be used in the fume hood. Then, since vapors are produced during the chemical reaction, an overpressure could be attained, that's why we must keep the glass sash of the fume hood between us and the vial. As a common risk, the vial could be dropped causing the hydrochloric acid to splash, so we must keep the vial well inside the hood.
Best regards.
Answer:
True => ΔH°f for C₆H₆ = 49 Kj/mole
Explanation:
See Thermodynamic Properties Table in appendix of most college level general chemistry texts. The values shown are for the standard heat of formation of substances at 25°C. The Standard Heat of Formation of a substance - by definition - is the amount of heat energy gained or lost on formation of the substance from its basic elements in their standard state. C₆H₆(l) is formed from Carbon and Hydrogen in their basic standard states. All elements in their basic standard states have ΔH°f values equal to zero Kj/mole.
Energy can not be created and cannot be destroyed
<span />