Answer:
We conclude that the total amount accrued, principal plus interest, from compound interest on an original principal of $2500 at a rate of 5% per year compounded 6 times per year over 8 years is $3723.38.
Step-by-step explanation:
Given
Principle P = $2500
Interest rate r = 5% = 0.05
Time period t = 8 years
To determine
Accrue Amount A = ?
Using the compound interest equation

where:
A represents the Accrue Amount
P represents the Principal Amount
r represents the interest rate
t represents the time period in years
n represents the number of compounding periods per unit t
Important tip:
- Given that the interest is compounded 6 times each year, therefore, the value of n = 6.
now substituting P = 2500, r = 0.05, t = 8 and n = 6 in the equation



∵ 
$
Therefore, we conclude that the total amount accrued, principal plus interest, from compound interest on an original principal of $2500 at a rate of 5% per year compounded 6 times per year over 8 years is $3723.38.
Answer:
n - (-6) < 9
n < 3
Step-by-step explanation:
When setting up an inequality, using the key words from the problem will help. The word 'difference' would indicate subtraction and 'less than' would be the '<' inequality sign. Since the expression is 'the difference of a number and -6', we write:
n - (-6) < 9
Whenever we subtract a negative number, we change both signs to positive:
n + 6 < 9
Using inverse operations to solve: n + 6 - 6 < 9 - 6
n < 3
Answer:
x = -3
Step-by-step explanation:

Substitute -5 for p in the given equation and solve

Answer:

Step-by-step explanation:
Let x, y , and z be the numbers.
Then the geometric sequence is 
Recall that term of a geometric sequence are generally in the form:

This implies that:
a=32 and 
Substitute a=32 and solve for r.


Take the fourth root to get:
![r=\sqrt[4]{\frac{81}{256} }](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B81%7D%7B256%7D%20%7D)

Therefore 

