Answer:
Kc = 3.90
Explanation:
CO reacts with
to form
and
. balanced reaction is:

No. of moles of CO = 0.800 mol
No. of moles of
= 2.40 mol
Volume = 8.00 L
Concentration = 
Concentration of CO = 
Concentration of
= 

Initial 0.100 0.300 0 0
equi. 0.100 -x 0.300 - 3x x x
It is given that,
at equilibrium
= 0.309/8.00 = 0.0386 M
So, at equilibrium CO = 0.100 - 0.0386 = 0.0614 M
At equilibrium
= 0.300 - 0.0386 × 3 = 0.184 M
At equilibrium
= 0.0386 M
![Kc=\frac{[H_2O][CH_4]}{[CO][H_2]^3}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BH_2O%5D%5BCH_4%5D%7D%7B%5BCO%5D%5BH_2%5D%5E3%7D)

Answer:
0.13 M ( 2 s.f)
Explanation:
2Cl2O5 (g)-->2Cl2(g) +5O2 (g)
rate= (17.4 M -1 .s -1 ) [Cl2O5]2
From the rte above, we can tell that our rate constant (k) = 17.4 M -1 .s -1
The units of k tells us this is a second order reaction.
Initial Concentration [A]o = 1.46M
Final Concentration [A] = ?
Time = 0.400s
The integrated rate law for second order reactions is given as;
1 / [A] = (1 / [A]o) + kt
1 / [A] = [ (1/ 1.46) + (17.4 * 0.4) ]
1 / [A] = 0.6849 + 6.96
1 / [A] = 7.6496
[A] = 1 / 7.6496
[A] = 0.13073 M ≈ 0.13 M ( 2 s.f)
To know the exact amount of sodium hydroxide that the teacher needs to order, we need to know how many students are there and the amount that each student uses.
We will then multiply these two values and get the amount needed to be ordered.
Since you have not provided such data in your question, I will just assume them to show the steps of the solution. You can then apply these steps to the values you have.
Now, assume that a class of 60 students and that each student needs to use 130 grams of sodium hydroxide to use during the lab.
This means that the teacher will order:
130 x 60 = 7800 grams = 7.8 kg of sodium hydroxide
Explanation:
This atom is on the almost extreme right of the 2nd period of the periodic table (except for the stable element on the extreme right). This means it has the highest mass number of the unstable elements of the period. It thus attracts its electron clouds more strongly that the elements to the left of the period . This means it can gain an atom easily ( this is what is called electronegativity – tendency to attract an electron) than is can lose an electron. In addition, it only needs to acquire one electron to achieve a stable electron configuration (8) in its valence shell.
Due to these, it is hard for the atoms to lose an electron which is why it has a high ionization energy- the energy required to lose an electron.
Learn More:
For more on electronegativity and ionization energy check out;
brainly.com/question/13961537
brainly.com/question/13590158
brainly.com/question/539322
brainly.com/question/1594185
brainly.com/question/11743726
#LearnWithBrainly
The answer for this question is MgF2