Answer:
The spring is compressed by 0.275 meters.
Explanation:
For equilibrium of the gas and the piston the pressure exerted by the gas on the piston should be equal to the sum of weight of the piston and the force the spring exerts on the piston
Mathematically we can write
we know that
Now the force exerted by an spring compressed by a distance 'x' is given by
Using the above quatities in the above relation we get
Answer:
There are three common methods of charging a battery; constant voltage, constant current and a combination of constant voltage/constant current with or without a smart charging circuit.
Constant voltage allows the full current of the charger to flow into the battery until the power supply reaches its pre-set voltage. The current will then taper down to a minimum value once that voltage level is reached. The battery can be left connected to the charger until ready for use and will remain at that “float voltage”, trickle charging to compensate for normal battery self-discharge.
Constant current is a simple form of charging batteries, with the current level set at approximately 10% of the maximum battery rating. Charge times are relatively long with the disadvantage that the battery may overheat if it is over-charged, leading to premature battery replacement. This method is suitable for Ni-MH type of batteries. The battery must be disconnected, or a timer function used once charged.
Constant voltage / constant current (CVCC) is a combination of the above two methods. The charger limits the amount of current to a pre-set level until the battery reaches a pre-set voltage level. The current then reduces as the battery becomes fully charged. The lead acid battery uses the constant current constant voltage (CC/CV) charge method. A regulated current raises the terminal voltage until the upper charge voltage limit is reached, at which point the current drops due to saturation.
Answer:
This doesn't represent an equilibrium state of stress
Explanation:
∝ = 1 , β = 1 , y = 1
x = 0 , y = 0 , z = 0 ( body forces given as 0 )
Attached is the detailed solution is and also the conditions for equilibrium
for a stress state to be equilibrium all three conditions has to meet the equilibrum condition as explained in the attached solution
Answer:
2.0%
Explanation:
Percentage of aggregate = 94%
Specific gravity = 2.65
Specific gravity of asphalt = 1.9
Density of mix = 147pcf = 147lb/ft³
Total weight of mix: (volume = 1ft³)
= (147lb/ft³)(1ft³)
= 147lb
Percentage weight of asphalt in<u> mix:</u>
100% - 94%
= 6%
Weight of asphalt binders
= 6% x 147lb
= 8.82lb
Weight of aggregate in mix:
= 94% x 147
= 138.18lb
Specific weight of asphalt binder:
(Gab)(Yw)
Yw = specific Weight of water
= 62.4lb
Gab = specific gravity of asphalt binder
= 1.0
(62.4lb)(1.0)
= 62.4 lb/ft³
Volume of asphalt in binder:
8.82/62.4
= 0.14ft³
Specific weight of binder in mix:
2.65 x 62.4lb/ft³
= 165.36 lb/ft³
Volume of aggregate:
= 138.18/165.36
= 0.84ft³
Volume of void in the mix:
1ft³ - 0.84ft³ - 0.14ft³
= 0.02ft³
<u>The percentage of void in total mix:</u>
VTM = (0.02ft³/1ft³)100
= 2.0%