Here are the observations
<u>S</u><u>u</u><u>g</u><u>a</u><u>r</u><u>:</u><u>-</u>
- Sugar is soluble in water
- so It will dissolve in water .
<u>C</u><u>o</u><u>r</u><u>n</u><u> </u><u>s</u><u>y</u><u>r</u><u>u</u><u>p</u><u>:</u><u>-</u>
- Corn syrup is also basically a sugar.
- It will dissolve in water too .
- If we shake the mixture in glass then corn syrup will be dissolved.
<u>O</u><u>i</u><u>l</u><u>:</u><u>-</u>
- Oil is not soluble in water
- Hence it won't dissolve in water.
- It will float over water and make two layers
What do you mean? Is there a picture ?
Answer:
Explanation:
The velocity of a wave in a string is equal to:
v = √(T / (m/L))
where T is the tension and m/L is the mass per length.
To find the mass per length, we need to find the cross-sectional area of the thread.
A = πr² = π/4 d²
A = π (3.0×10⁻⁶ m)²
A = 2.83×10⁻¹¹ m²
So the mass per length is:
m/L = ρA
m/L = (1300 kg/m³) (2.83×10⁻¹¹ m²)
m/L = 3.68×10⁻⁸ kg/m
So the wave velocity is:
v = √(T / (m/L))
v = √(7.0×10⁻³ N / (3.68×10⁻⁸ kg/m))
v ≈ 440 m/s
The speed of sound in air at sea level is around 340 m/s. So the spider will feel the vibration in the thread before it hears the sound.
Answer:
Tension in Cord=174 N
Explanation:
Given Data
L (Phone Cord Length)=4.89 m
m (Cord Mass)=0.212 Kg
T (Time for four trips)=0.617 s
Tension=?
Solution
V=λ×f



I can't decide between A and B, but B seems more likely to me. Even though the molecules don't look like they're moving, the area of contact is slightly more compressed.