A. The concentration is in mol/L
Answer:
1) Increasing temperature
2) Stirring
3) Increasing surface area of salt by grinding it
Answer:
The answer is 465.6 mg of MgI₂ to be added.
Explanation:
We find the mole of ion I⁻ in the final solution
C = n/V -> n = C x V = 0.2577 (L) x 0.1 (mol/L) = 0.02577 mol
But in the initial solution, there was 0.087 M KI, which can be converted into mole same as above calculation, equal to 0.02242 mol.
So we need to add an addition amount of 0.02577 - 0.02242 = 0.00335 mol of I⁻. But each molecule of MgI₂ yields two ions of I⁻, so we need to divide 0.00335 by 2 to find the mole of MgI₂, which then is 0.001675 mol.
Hence, the weight of MgI₂ must be added is
Weight of MgI₂ = 0.001675 mol x 278 g/mol = 0.4656 g = 465.6 mg
Answer:
A Lewis acid is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct
Explanation:
CAN YOU MAKE ME BRAINELIST PLEASE
Answer: B. It’s a dilute strong base.
Explanation:
1) Definition of acids and bases: as per Bronsted-Lowry model, an acid is a substance that donates hydrogen ions and a base is a substance that accepts hydrogen ions.
Ca(OH)₂ does not have hydrogen ions to donate, but it can accept hydrogen ions to form H₂O according to this equation: H⁺ + OH⁻ → H₂O.
Hence, Ca(OH)₂ is a base.
2) Definition of strong base: a strong base is a base that dissociates completely into metallic and hydroxide ions in aqueous solutions, while a weak base dissociates partially.
Hence, Ca(OH)₂ is a strong base.
3) Definition of dilute: it refers to a solution meaning that the substance is not pure and the concentration is low. Since, the solution the Ca(OH)₂ is 0.02 M means that it is dilute.
Therefore, we have found that the description of 0.02 M Ca(OH)₂ is that is is a dilute strong base (option B).