Answer:
150 million kilometres
Explanation:
The astronomical unit (symbol: au, or AU or AU) is a unit of length, roughly the distance from Earth to the Sun and equal to 150 million kilometres (93 million miles) or 8.3 light minutes.
Answer:
R=V/I=6/2=3ohm
time =5minutes =5*60=300seconds
I=2A
Heat =I^2Rt=(2)^2*3*300=4*900=3600J
From the options provided in the question, the measurement which is not an SI base unit is volume.
<h3>What is SI base unit?</h3>
This is referred to as the standard and fundamental unit of measurement of various quantities or variables which is defined arbitrarily and not by combinations of other units.
Volume is a quantity which is derived from the combination of lengths in a three-dimensional manner which is why the formula is length× breadth×height and the unit is cm³. This is gotten from the combination of the unit of length which is cm.
This is therefore the reason why volume was chosen as the most appropriate choice.
Read more about Volume here brainly.com/question/463363
#SPJ1
1 kg ball can have more kinetic energy than a 100 kg ball as increase in velocity is having greater impact on K.E than increase in mass.
<u>Explanation</u>:
We know kinetic energy can be judged or calculated by two parameters only which is mass and velocity. As kinetic energy is directly proportional to the
and increase in velocity leads to greater effect on translational Kinetic Energy. Here formula of Kinetic Energy suggests that doubling the mass will double its K.E but doubling velocity will quadruple its velocity:

Better understood from numerical example as given:
If a man A having weight 50 kg run with speed 5 m/s and another man B having 100 kg weight run with 2.5 m / s. Which man will have more K.E?
This can be solved as follows:


It shows that man A will have more K.E.
Hence 1 kg ball can have more K.E than 100 kg ball by doubling velocity.
Answer:
A. the pressure decrease
Explanation:
pressure decreases when the surface area over which a force is applied increases. pressure increases when the surface area over which force is applied decreases.