The position of equilibrium lies far to the right, with products being favoured. Hence, option A is correct.
<h3>What is equilibrium?</h3>
Chemical equilibrium is a condition in the course of a reversible chemical reaction in which no net change in the amounts of reactants and products occurs.
A very high value of K indicates that at equilibrium most of the reactants are converted into products.
The equilibrium constant K is the ratio of the concentrations of products to the concentrations of reactants raised to appropriate stoichiometric coefficients.
When the value of the equilibrium constant is very high, the concentration of products is much higher than the concentration of reactants.
This means that most of the reactants are converted into products and the position of equilibrium lies far to the right, with products being favoured.
Hence, option A is correct.
Learn more about the equilibrium here:
brainly.com/question/23641529
#SPJ1
Answer: They always have the same functional groups.
Explanation:
use quizlet too if you have toooo
Answer:
sugar
Explanation:
they are white, it pours easily and you can hold them up as grains
The balanced chemical equation for the formation ammonia is
N2(g) + 3H2(g) ----> 2NH3(g) .
The balanced chemical equations explains that the same number of each element exist as reactants and products. The coefficients in a balanced equation must be the simplest whole number ratio. Mass is always conserved in chemical reactions.
For the formation of ammonia, the chemical equation is
N2(g) + H2(g) ----> NH3(g)
Balancing the chemical reaction, we can write,
N2(g) + 3H2(g) ----> 2NH3(g) .
This equation shows two nitrogen entering the reaction together and two hydrogens entering the reaction together. Since NH3 is multiplied by a coefficient of 2 there are now 2 nitrogen and 6 hydrogens. The 6 hydrogens come from the 2 multiplied by the subscript of 3. This is the balanced chemical reaction.
To learn more about Balanced chemical equation please visit:
brainly.com/question/14072552
#SPJ4
Answer:
The volume occupied by 2.34 grams of CO2 gas at STP is 1.18 L