Answer:
The ocean currents are too strong by the Amazon River to form deltas.
Explanation:
The Atlantic has sufficient wave and tidal energy to carry most of the Amazon's sediments out to sea, thus the Amazon does not form a true delta. The great deltas of the world are all in relatively protected bodies of water, while the Amazon empties directly into the turbulent Atlantic.
<u>Answer:</u> The limiting reagent in the reaction is bromine.
<u>Explanation:</u>
Limiting reagent is defined as the reagent which is completely consumed in the reaction and limits the formation of the product.
Excess reagent is defined as the reagent which is left behind after the completion of the reaction.
Given values:
Moles of iron = 10.0 moles
Moles of bromine = 12.0 moles
The chemical equation for the reaction of iron and bromine follows:

By the stoichiometry of the reaction:
If 3 moles of bromine reacts with 2 moles of iron
So, 12.0 moles of bromine will react with =
of iron
As the given amount of iron is more than the required amount. Thus, it is present in excess and is considered as an excess reagent.
Hence, bromine is considered a limiting reagent because it limits the formation of the product.
Thus, the limiting reagent in the reaction is bromine.
Answer:
36365.4 Joules
Explanation:
The quantity of Heat Energy (Q) released on cooling a heated substance depends on its Mass (M), specific heat capacity (C), and change in temperature (Φ)
Thus, Q = MCΦ
Since, M = 45.4 g
C = 3.56 J/g°C,
Φ = 250°C - 25°C = 225°C
Q = 45.4g x 3.56J/g°C x 225°C
Q= 36365.4 Joules
Thus, 36365.4 Joules of heat energy is released when the lithium is cooled.
Answer:
D
Explanation:
Anions are attracted to the positive end of a dipole, while the cations are attracted to the negative end. As the size of the dipole moment or the ionic charge increases, the vastness of the attraction also increases. This type of attraction is important for solutions of ionic substances in polar liquids.
A barometer measures atmospheric pressure.