1. Answer;
=56 g/mol
Explanation and solution;
PV = nRT
nRT= mass/molar mass (RT)
molar mass = (mass/V ) × (RT/P)
= Density × (RT/P)
Molar mass = 2.0 g/L × (0.0821 × 323 K)/0.948 atm
Molar mass = 56 g/mol
2. Answer;
Molecular mass is C4H8
Explanation;
Empirical mass × n = molar mass
Empirical mass for CH2 = 14 g/mol
Therefore;
56 g/mol = 14 g/mol × n
n = 4
The molecular formula= 4(CH2)
= C4H8
Here we have to calculate the heat required to raise the temperature of water from 85.0 ⁰F to 50.4 ⁰F.
10.857 kJ heat will be needed to raise the temperature from 50.4 ⁰F to 85.0 ⁰F
The amount of heat required to raise the temperature can be obtained from the equation H = m×s×(t₂-t₁).
Where H = Heat, s =specific gravity = 4.184 J/g.⁰C, m = mass = 135.0 g, t₁ (initial temperature) = 50.4 ⁰F or 10.222 ⁰C and t₂ (final temperature) = 85.0⁰F or 29.444 ⁰C.
On plugging the values we get:
H = 135.0 g × 4.184 J/g.⁰C×(29.444 - 10.222) ⁰C
Or, H = 10857.354 J or 10.857 kJ.
Thus 10857.354 J or 10.857 kJ heat will be needed to raise the temperature.
answer: it is true because a hypothesis is something you think will happen during a experiment
explained: I took the test
Answer:
The new volume of a gas at 750 mmhg and with a volume of 2. 00 l when allowed to change its volume at constant temperature until the pressure is 600 mmhg is 2.5 Liters.
Explanation:
Boyle's law states that the pressure of a given amount of gas is inversely proportional to it's volume at constant temperature. It is written as;
P ∝ V
P V = K
P1 V1 = P2 V2
Parameters :
P1 = Initial pressure of the gas = 750 mmHg
V1 = Initial pressure of the gas = 2. 00 Liters
P2 = Final pressure of the gas = 600 mmHg
V2 = Fimal volume of the gas = ? Liters
Calculations :
V2 = P1 V1 ÷ P2
V2= 750 × 2. 00 ÷ 600
V2 = 1500 ÷ 600
V2 = 2.5 Liters.
Therefore, the new volume of the gas is 2. 5 Liters.