Answer:
(a) The magnitude of the applied force is (0.0001524k) Newton
(b) Corresponding stress in the steel core = (0.0001524k/area) Newton per meter square
Explanation:
(a) From Hookes law of elasticity,
Force applied = force constant (k) × compression
compression = 0.006 in = 0.006 × 0.0254 = 0.0001524 meter
Force applied = k × 0.0001524 = (0.0001524k) Newton
(b) Stress = Force applied (Newton)/area of steel core (meter square) = (0.0001524k/area) Newton per meter square
Answer:
5.6 Tesla
Explanation:
L = 52 cm = 0.52 m
V = 2.75 m/s
e = 8 V
Let B be tha magnitude of magnetic field. Use the formula for the motional emf
e = B × V × L
B = e / V L
B = 8 / (2.75 × 0.52)
B = 5.6 Tesla
Answer:
(a)2.7 m/s
(b) 5.52 m/s
Explanation:
The total of the system would be conserved as no external force is acting on it.
Initial momentum = final momentum
⇒(4.30 g × 943 m/s) + (730 g × 0) = (4.30 g × 484 m/s) + (730 g × v)
⇒ 730 ×v = (4054.9 - 2081.2) =1973.7
⇒v=2.7 m/s
Thus, the resulting speed of the block is 2.7 m/s.
(b) since, the momentum is conserved, the speed of the bullet-block center of mass would be constant.

Thus, the speed of the bullet-block center of mass is 5.52 m/s.
Answer:
<h3>After 3seconds</h3>
Explanation:
A supersonic aircraft flies at 3 km altitude at a speed of 1000 m/s on a standard day. How long after passing directly above a ground observer is the sound of the aircraft heard by the ground observer
Using the formula for calculating speed expressed as;
Speed = Distance/Time
Given;
Distance = 3km = 3000m
Speed = 1000m/s
Required
How long after passing directly above a ground observer is the sound of the aircraft heard by the ground observer (Time)
From the formula;
Time = Distance/speed
Time = 3000/1000
Time = 3seconds
Hence the sound of the aircraft is heard after 3 seconds