It can be either C or B
Reasons it can be C: Red and Blue together(if I'm correct in art) is the combined color of two of the 3 primary colors to get a purple/violet color and if said filter is see through or just too dense for the light to even penetrate the said filter(in theory) but all in all purple is the answer with the two primary colors blue and red.
But also, it depends on what kind of filter it is, if the filter is like a screen filter then it will just come out in blue with the slightly different colors of again purple but in a darker tone then the actual eye can see.
Or it can be just C again cause the filter can be a film but that's a bit too far and to complex for right now so I believe it is B
Answer:
1.58 Hz
Explanation:
The frequency of the simple pendulum is given by
f = 1/T
= 1/2π√g/l
In this problem, I = 10.0 cm = 0.1 m
f = 1/2π√9.8/0.1
= 1.58 Hz
Answer:
Humus
Explanation:
Its Humus I believe. I remember learning something like this.
Answer:
Explanation:
Hello! To solve this problem we must be clear about the concept of energy conservation, and kinetic energy with the following sentence
The kinetic energy of the two cars (v = 1.2m / S) plus the kinetic energy of the third car (v = 3.5m / S) must be equal to the kinetic energy of the three cars together.
The kinetic energy is calculated by the following equation.

m= mass of the cars=26500kg
V=speed
E=kinetic energy
taking into account the above, the following equation is inferred
1= the cars are separated
2=
the cars are togheter
E1=E2

where
m= mass of each car
V1= 1.2m/s
Va=3.5,m/S

m= mass of each car
V=speed (in m/s) of the three coupled cars after the first couples with the other two
Solving



the speed of the three coupled cars after the first couples with the other two is 2.245m/s