1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sveta_85 [38]
3 years ago
10

In a solution, the solvent is present in the larger amount. A True B False

Physics
1 answer:
lana [24]3 years ago
8 0
Th statement represented above : In a solution, the solvent is present in the larger amount is definitely FALSE. I choose this answer as a correct one as it also could be a solutions of alcohol ot for example <span>walter which means it's not so solid and liquid respectively. Hope it's clear! Regards!</span>
You might be interested in
Given the isotope 2Fes, which has an actual mass of 55.934939 u: a) b) Determine the mass defect of the nucleus in atomic mass u
SSSSS [86.1K]

Answer:

Mass defect of each iron-56 nuclei:

The binding energy per nucleon of Iron-56 is approximately 8.6 MeV.

Explanation:

According to the physics constants table on Chemistry Libretexts:

  • Proton rest mass: \rm 1.0072765\;amu;
  • Neutron rest mass: \rm 1.0086649\; amu.
  • Speed of light in vacuum: \rm 2.99792458\times 10^{8}\;m\cdot s^{-1}.
  • Charge on an electron: \rm 1.6021765\times 10^{-19}\;C.

<h3>a)</h3>

The mass defect of a nucleus is equal to the sum of the mass of its parts (protons and, in most cases, neutrons) minus the mass of the nucleus.

The atomic number of iron is 26. There are 26 protons in each iron-56 nucleus. The mass number 56 indicates that there are 56 nucleons (neutrons and protons) in each iron-56 nucleus. The other 56 - 26 = 30 particles are neutrons.

The mass of protons and neutrons in each iron-56 nucleus will be:

\rm 26 \times 1.0072765 + 30 \times 1.0086649 = 56.464736\;amu.

According to this question, the mass of an iron-56 nucleus is equal to 55.934939 amu. The mass defect will be

\rm 56.464736 - 55.934939 = 0.514197\;amu.

<h3>b)</h3>

By the mass-energy equivalence,

E = m\cdot c^{2}.

Refer to this equation, the speed of light in vacuum c^{2} is the conversion factor between mass m and energy E. The value of c is usually given only in SI units \rm m\cdot s^{-1}. Accordingly, the value of c^{2} will be in the SI unit \rm m^{2}\cdot s^{-2} = J\cdot kg^{-1}.

Convert million electron-volts to joules.

One electron-volt is equal to the electrical work done moving an electron across a potential difference of one volt.  

\begin{aligned}\rm 1 MeV&= \rm 10^{6}\; eV\\ &= \rm (10^{6}\times 1.6021765\times 10^{-19}\;C)\times 1\; V\\&=\rm 1.6021765\times 10^{-19}\;J\end{aligned}.

Convert the unit of c^{2} from \rm m^{2}\cdot s^{-2} = J\cdot kg^{-1} to the desired \rm MeV \cdot amu^{-1}:

\begin{aligned}c^{2} &= \rm {\left(2.99792458\times 10^{8}\;m\cdot s^{-1}\right)}^{2}\\&=\rm 8.987551787\times 10^{16}\; m^{2}\cdot s^{-2}\\ &= \rm 8.987551787\times 10^{16}\; J\cdot kg^{-1}\\&= \rm 8.987551787\times 10^{16}\; J\cdot kg^{-1}\times \frac{1\;MeV}{1.6021765\times 10^{-13}\;J}\times \frac{1\times 10^{-3}\;kg}{6.022142\times 10^{23}\;amu}\\&\approx \rm 931.602164\;MeV\cdot amu^{-1}\end{aligned}.

Total binding energy in each iron-56 nucleus:

\begin{aligned}E &= m\cdot c^{2}\\&= \rm 0.514197\;amu \times 9.31602164\;MeV\cdot amu^{-1} \\&=\rm 479.027038\; MeV \end{aligned}.

Again, the mass number 56 indicates that there are 56 nucleons in each iron-56 nucleus. The binding energy per nucleon of iron-56 \mathrm{^{56}Fe} will be:

\displaystyle \rm \frac{479.027038\; MeV}{56} \approx 8.6\; MeV.

6 0
3 years ago
Electromagnetic waves are commonly referred to as _________
mart [117]
It’s going to be both answer A and B but if you can only answer one then it’s going to be B
3 0
2 years ago
A small glider is coasting horizontally when suddenly a very heavy piece of cargo falls out of the bottom of the plane.
myrzilka [38]

Answer:

a. The plane speeds up but the cargo does not change speed.

Explanation:

Just to make it clear, the question is as follows from what I understand.

A small glider is coasting horizontally when suddenly a very heavy piece of cargo falls out of the bottom of the plane.  You can neglect air resistance.

Just after the cargo has fallen out:

a. The plane speeds up but the cargo does not change speed.

b. The cargo slows down but the plane does not change speed.

c. Neither the cargo nor the plane change speed.

d. The plane speeds up and the cargo slows down.

e. Both the cargo and the plane speed up.

And we are requested to choose the right answer under the given conditions. We know the glider has no motor, then it must be in free fall movement, then it is experiencing some force that pulls it to the from due to the gravity effect on it, and a force in general is calculated by

F=m*a, m:= mass of the object, a:= acceleration.

Here we are only considering the horizontal effect of the forces, then since the mass is reduced the acceleration must increase to compensate and maintain  the equilibrium of the forces, then the glider being lighter can travel faster due to the acceleration. On the other hand by the time the cargo left the glider there was no acceleration and the speed it had at the moment he left the plane continues, then the cargo does not change its speed, then horizontally speaking the answer would be a. The plane speeds up but the cargo does not change speed.

5 0
3 years ago
How does the sun's gravity and the earth inertia keep us orbiting in the solar system
scZoUnD [109]
<span>Inertia keeps us orbiting because any object with mass has the tendency to resist changes to their direction and speed of movement. Combine that with the interaction of the gravitational attraction of the sun, and that is what keeps Earth in orbit. The sun’s gravitational force is one that is proportional to Earth’s mass, and it acts in a way that is almost exactly perpendicular to Earth’s motion. This keeps Earth from spinning into the sun or far away from it.</span>
6 0
3 years ago
The owners want the speed at the bottom of the first hill doubled. How much higher must the first hill be built?
Sonja [21]
Neglecting friction and air resistance, the first hill must be built 4 times higher than it is now.
3 0
3 years ago
Other questions:
  • A power station delivers 510 kw of power at 12,000 v to a factory through wires of total resistance of 2.5 ω. how much less powe
    5·1 answer
  • What would happen if Pinocchio were to say "My nose will grow now."
    6·2 answers
  • A 2.1w iPod is used for 30 minutes. How much energy does it use?
    6·1 answer
  • The slope of the line on a speed-time graph tells the speed.
    10·1 answer
  • Bank A has a leverage ratio of 10, while Bank B has a leverage ratio of 20. Similar losses on bank loans at the two banks cause
    8·1 answer
  • A car travels 8km in 7 minutes. Find the speed of the car.
    13·1 answer
  • Velocity v (m/s)
    12·1 answer
  • 16) A car's position in relation to time is plotted on the graph. What can be said about the car during segment B?
    6·1 answer
  • What are possible formulas for impulse? Check all that apply.
    9·1 answer
  • An object with a mass of m = 3.85 kg is suspended at rest between the ceiling and the floor by two thin vertical ropes.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!