Answer: A 59.5 degree celcius
The equation that we will use to solve this problem is :
PV = nRT where:
P is the pressure of gas = 1.8 atm
V is the volume of gas = 18.2 liters
n is the number of moles of gas = 1.2 moles
R is the gas constant = 0.0821
T is the temperature required (calculated in kelvin)
Using these values to substitute in the equation, we find that:
(1.8)(18.2) = (1.2)(0.0821)(T)
T = 332.5 degree kelvin
The last step is to convert the degree kelvin into degree celcius:
T = 332.5 - 273 = 59.5 degree celcius
Answer:
(a) 13.7 g.
(b) 28.91 g.
Explanation:
- molality (m) is the no. of moles of solute dissolved in 1.0 kg of solvent.
∴ m = (no. of moles of solute)/(mass of water (kg))
<em>∴ m = (mass/molar mass of solute)/(mass of water (kg)).</em>
<em />
<u><em>(a) Calculate the mass of CaCl₂·6H₂O needed to prepare 0.125 m CaCl₂(aq) by using 500. g of water.</em></u>
∵ m = (mass/molar mass of CaCl₂·6H₂O)/(mass of water (kg)).
m = 0.125 m, molar mass of CaCl₂·6H₂O = 219.0757 g/mol, mass of water = 500.0 g = 0.5 kg.
∴ 0.125 m = (mass of CaCl₂·6H₂O / 219.0757 g/mol)/(0.5 kg).
∴ mass of CaCl₂·6H₂O = (0.125 m)(219.0757 g/mol)(0.5 kg) = 13.7 g.
<u><em>(b) What mass of NiSO₄·6H₂O must be dissolved in 500. g of water to produce 0.22 m NiSO₄(aq)?</em></u>
∵ m = (mass/molar mass of NiSO₄·6H₂O)/(mass of water (kg)).
m = 0.22 m, molar mass of NiSO₄·6H₂O = 262.84 g/mol, mass of water = 500.0 g = 0.5 kg.
∴ 0.125 m = (mass of NiSO₄·6H₂O / 262.84 g/mol)/(0.5 kg).
∴ mass of NiSO₄·6H₂O = (0.22 m)(262.84 g/mol)(0.5 kg) = 28.91 g.
I cannot see the whole equation.Therefore I shall not answer
We would be dead. No heart, brain or blood flow <span />
<u>Answer:</u> The volume of concentrated solution required is 9.95 mL
<u>Explanation:</u>
To calculate the pH of the solution, we use the equation:
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
We are given:
pH = 0.70
Putting values in above equation, we get:
![0.70=-\log[H^+]](https://tex.z-dn.net/?f=0.70%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=10^{-0.70}=0.199M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-0.70%7D%3D0.199M)
1 mole of nitric acid produces 1 mole of hydrogen ions and 1 mole of nitrate ions.
Molarity of nitric acid = 0.199 M
To calculate the volume of the concentrated solution, we use the equation:

where,
are the molarity and volume of the concentrated nitric acid solution
are the molarity and volume of diluted nitric acid solution
We are given:

Putting values in above equation, we get:

Hence, the volume of concentrated solution required is 9.95 mL