The bond energy of each carbon-oxygen bond in carbon dioxide is d. 736 kJ
Since the chemical reaction is 2CO + O₂ → 2CO₂ and the total bond energy of the products carbon dioxide CO₂ is 1,472 kJ.
Since from the chemical reaction, we have 2 moles of CO₂ which gives 1,472 kJ and there are two carbon-oxygen, C-O bonds in CO₂, then
2 × C-O bond = 1,472 kJ
1 C-O bond = 1.472 kJ/2
C-O bond = 736 kJ
So, the bond energy of each carbon-oxygen bond in carbon dioxide is d. 736 kJ
Learn more about bond energy here:
brainly.com/question/21670527
A bond between 2 nonmetal atoms that have the same electronegativity and therefore have equal sharing of the bonding electron pairExample: In H-H each H atom has an electronegativity value of 2.1, therefore the covalent bond between them is considered nonpolar. Nonpolar covalent bonds, with equal sharing of the bond electrons, arise when the electronegativities of the two atoms are equal.
The correct answer is oceanic crust, 80 km, Hope this helps let me know.
"The other halogens are not as electronegative and so other hydrogen halides cannot form hydrogen bonds between molecules. Only London Forces are formed. - Therefore more energy is required to break the intermolecular forces in HF than the other hydrogen halides and so it has a higher boiling point."
not a hack link, just stating where i got your answer from! -
https://www.mytutor.co.uk/answers/17558/A-Level/Chemistry/Explain-the-unusually-high-boiling-point-of-HF/
0.1 km
2cm/year * 5000 yrs = 10000 cm
1cm= .01 m
1km = 1000 m
so the answer is 0.1 km