Temperature is a measure of the average kinetic energy of the particles of a substance.
Hope this helps! :)
The Moon is 3.8 108 m from Earth and has a mass of 7.34 1022 kg. 5.97 1024 kg is the mass of the Earth.
<h3>What kind of gravitational pull does the moon have on the planet?</h3>
On the surface of the Moon, the acceleration caused by gravity around 1.625 m/s2 which is 16.6% greater than on the surface of the Earth 0.166.
<h3>What does the Earth's center's gravitational pull feel like?</h3>
Gravity is zero if you are in the centre of the earth since everything around you is pulling "up" (up is the only direction).
<h3>Where is the Earth's and the moon's gravitational centre?</h3>
It is around 1700 kilometres below Earth's surface.
To know more about gravitational force visit:-
brainly.com/question/12528243
#SPJ4
Answer:
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.
Explanation:
We can answer this question by using Kepler's second law of planetary motion, which states that:
"A line connecting the center of the Sun with the center of each planet sweeps out equal areas in equal intervals of time"
This means that when a planet is further away from the Sun, it will move slower (because the line is longer, so it must move slower), while when the planet is closer to the Sun, it will move faster (because the line is shorter, so it must move faster).
In the text of this problem, it is written that the planet moves at 31 km/s when is close to the star and 35 km/s when it is farthest: this is in disagreement with what we said above, therefore the correct option is
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.
Answer:
(a) -472.305 J
(b) 1 m
Explanation:
(a)
Change in mechanical energy equals change in kinetic energy
Kinetic energy is given by
Initial kinetic energy is 
Since he finally comes to rest, final kinetic energy is zero because the final velocity is zero
Change in kinetic energy is given by final kinetic energy- initial kinetic energy hence
0-472.305 J=-472.305 J
(b)
From fundamental kinematic equation

Where v and u are final and initial velocities respectively, a is acceleration, s is distance
Making s the subject we obtain
but a=\mu g hence

Classically, gravitational attraction is due to the masses of objects. It is inversely proportional to the square of the distances between the objects.
Magnetic attraction is due to the magnetism in objects which is due to uncompensated electron spins in certain atoms. The force due to magnetism less easy to put into one equation than gravity since magnetic fields can have different shapes, but the simplest one (the dipolar field) is inversely proportional to the cube of the distance between the magnetic dipoles.