Answer:
The correct answer is:
(A) to the left
(B) at speed -0.8725 m/s
Explanation:
The given values are:
Plate 1:
Mass,
m₁ = 201 g
Velocity,
v₁ = +1.79 m/s
Plate 2:
Mass,
m₁ = 335 g
Velocity,
v₁ = -2.47 m/s
According to the conservation of momentum, we get
⇒ 
then,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
⇒ 
⇒
(to the left)
Answer:
Speed = 10.24 m/s.
Explanation:
<u>Given the following data;</u>
Distance = 100m
Time = 9.77
To find her speed;
Speed can be defined as distance covered per unit time. Speed is a scalar quantity and as such it has magnitude but no direction.
Mathematically, speed is given by the equation;

Substituting into the equation, we have;

<em>Speed = 10.24 meter per seconds. </em>
by the wind and air flow in the wind
Answer:
t=L/
Explanation:
<u>solution:</u>
Let E be an observer, and B a second observer traveling with velocity
as measured by E. If E measures the velocity of an object A as
then B will measure A velocity as
=
-
Applied here,
the walkway (W) and the man (M) are moving relative to Earth (E}, the velocity of the man relative to the moving walkway is
=
-
,

The time required for the woman, traveling at constant speed
relative to the ground, to travel distance L relative to the ground is
:
t=L/
Answer:
mass of the composite lump is 10 kg
Explanation:
given data
mass = 4 kg
to find out
mass of composite lump
solution
we know energy is conserved so
so m1 = m2 = m0 that is 4kg
and
E(1) release+ E(2) release = E(1,2) rest
so γ(1)m(1)c² + γ(2)m(2)c² = Mc² ..........................1
that why here
|v(1)| = |v(2)| = 3/5 c ......................2
and
γ = 1 / √(1 − v²/c²) .......................3
put here v = 3 and c is 5
γ = 1 /√(1 − 9/25)
γ = 5/4
so
γ(1) = γ(2) = γ = 5/4
so from equation 1
γ(1)m(1)c² + γ(2)m(2)c² = Mc²
M = 2γm0
M = 2(5/4 )(4)
M = 10 kg
so mass of the composite lump is 10 kg