Answer:
Micro and radio waves.
Lower energy.
Gamma rays.
Explanation:
The electromagnetic spectrum is the range of frequencies of electromagnetic radiation and their respective wavelengths.
Ionising radiation os defined as the energy required of photons of a wave to ionize atoms, causing chemical reactions.
The energy of the wave depends on both the amplitude and the frequency. If the energy of each wavelength is a discrete packet of energy, a high-frequency wave will deliver more of these packets per unit time than a low-frequency wave. In summary, the longer the wavelength, the lower the energy to ionise.
The velocity of a wave is directly proportional to the frequency of that wave.
c = f * lambda
Where,
c = velocity of the wave
f = frequency of the wave = 1/time
Lambda = wavelength.
From the above expression, the longer the wavelength, lambda the shorter the frequency.
Examples of waves with longer wavelengths are, micro and radio waves, while radiations with shorter wavelengths like gamma rays.
Answer:
6.03 mV
Explanation:
length of solenoid, L = 2 m, N = 12000, di/dt = 40 A/s,
Magnetic field due to solenoid
B = μ0 n i = μ0 N i / L
dB/dt = μ0 N / L x di / dt
dB /dt = (4 x 3.14 x 10^-7 x 12000 x 40) / 2 = 0.3 T/s
Induced emf, e = rate of change of magnetic flux
e = dΦ / dt = A x dB / dt
e = 3.14 x 0.08 x 0.08 x 0.3 = 6.03 x 10^-3 V = 6.03 mV
Answer:
E = 1440 kJ
Explanation:
It is given that,
Power of a cooker oven is 800 W
Voltage at which it is operated is 230 V
Time, t = 30 minutes = 1800 seconds
We need to find the electrical energy used by the cooker oven. The product of power and time is equal to the energy consumed. So,

So, electrical energy of 1440 kJ is consumed by the cooker oven.
Answer:
Energy transition therefore occurs due to the amount of kinetic energy gained by the electrons. The electrons with higher kinetic energy are excited to the higher level (excited state) compare to the electron with low kinetic energy (this energy are energy in the ground state)
Explanation:
Energy level transition occur when light rays strikes a metal surface to emit electron from the surface, a term known as photoelectric effect. This amount of electron emitted from the surface depends on the speed of light ray striking the metal surface.
Energy transition therefore occurs due to the amount of kinetic energy gained by the electrons. The electrons with higher kinetic energy are excited to the higher level (excited state) compare to the electron with low kinetic energy (this energy are energy in the ground state)
The answer to your question is true