The decomposition time : 7.69 min ≈ 7.7 min
<h3>Further explanation</h3>
Given
rate constant : 0.029/min
a concentration of 0.050 mol L to a concentration of 0.040 mol L
Required
the decomposition time
Solution
The reaction rate (v) shows the change in the concentration of the substance (changes in addition to concentrations for reaction products or changes in concentration reduction for reactants) per unit time
For first-order reaction :
[A]=[Ao]e^(-kt)
or
ln[A]=-kt+ln(A0)
Input the value :
ln(0.040)=-(0.029)t+ln(0.050)
-3.219 = -0.029t -2.996
-0.223 =-0.029t
t=7.69 minutes
3.65 X 10 to the power of 8
Answer:
the answer is 6
Explanation:
there is 3 hydrogen molecules in NH3 and there's 2 molecules of NH3 so in total, there are 6 hydrogen molecules on the products side.
Answer:
The answer is b
Explanation:
they both are decomposition
First, we shall calculate the total number of moles present in the final solution.
Number of moles in 0.50 m NaCl = molarity * volume = 0.50 * 3.0 = 1.5 moles.
Number of moles in 0.2777m NaCl = molarity * volume = 0.2777 * 9.0 = 0.24993 moles
Total number of moles = 1.5 + 0.24993 = 1.74993 moles
Second, we shall calculate the total volume of the final solution.
Total volume = 3 + 9 = 12 litres.
The molarity = total number of moles / total volume = 1.74993 / 12 = 0.1458 m