Answer:
F = 100 Newtons
Explanation:
F = ?
m = 0.04kg
u = 0m/s ==> u is just an abbreviation for initial velocity, it is conventional.
s = 50m ==> s is just an abbreviation for distance, it is conventional.
v = 500m/s ==> v is just an abbreviation for final velocity, it is conventional.

Then F = ma = 0.04 x 2500 = 100N
Answer:
Explanation:
spring constant k = 425 N/m
a ) At the point of equilibrium
restoring force = frictional force
= kx = 10 N
425 x = 10
x = 2.35 cm
b )
Work done by frictional force
= -10 x 2.35 x 10⁻² x 2 J ( Distance is twice of 2.35 cm )
= - 0.47 J
= Kinetic energy remaining with the cookie as it slides back through the position where the spring is unstretched .
= 425 - 0.47
= 424.53 J
=
Answer:
The velocity after 2 seconds can be found through:
V = u +a*t
Where V is final velocity, u is initial velocity, a is acceleration and t is time.
V = 0 + 2* 2= 4 meters/second
The distance (s) can be found through:
V^2= u^2 +2*a* s
Where V is final velocity, u is initial velocity, a is acceleration.
4^2= 0^2 + 2 *2*s
16= 0 + 4s
s= 4 meters
Distance (s) can also be found through:
s= ut + 1/2 at^2
s= 0+ 1/2 *2*2^2= 1 *2*2
s= 4 meters
Explanation:
Answer:
Tangential speed, v = 2.64 m/s
Explanation:
Given that,
Mass of the puck, m = 0.5 kg
Tension acting in the string, T = 3.5 N
Radius of the circular path, r = 1 m
To find,
The tangential speed of the puck.
Solution,
The centripetal force acting in the string is balanced by the tangential speed of the puck. The expression for the centripetal force is given by :



v = 2.64 m/s
Therefore, the tangential speed of the puck is 2.64 m/s.