| Impedance | = √ [R² +(ωL)²]
R² = 6800² = 4.624 x 10⁷
(ωL)² = (2 · π · f · 2.3 · 10⁻³)²
= 2.0884 x 10⁻⁴ f²
| Z | = √[ (4.624 x 10⁷) + (2.0884 x 10⁻⁴ f²) ] = 1.6 x 10⁵
(1.6 x 10⁵)² = (4.624 x 10⁷) + (2.0884 x 10⁻⁴ f²)
(2.56 x 10¹⁰) - (4.624 x 10⁷) = 2.0884 x 10⁻⁴ f²
Frequency² = (2.56 x 10¹⁰ - 4.624 x 10⁷) / 2.0884 x 10⁻⁴
= 2.555 x 10¹⁰ / 2.0884 x 10⁻⁴
= 1.224 x 10¹⁴
= 122,400 GHz <== my calculation
11.1 MHz <== online impedance calculator
Obviously, I must have picked up some rounding errors
in the course of my calculation.
The answer is A. They are both processes in which water is changed into water vapor.
Answer:he formula for average speed is (total distance/total time)
the y-component does not matter in this problem. so do 6.26(cos45)=4.43m/s to find the x-component velocity which is constant throughout the duration of the flight. the total distance is 2L because he travels distance L twice.
the total time is ((time in water)+(time out of water)) since you dont have time you must eliminate it. to do this you need (distance)/(time)=velocity
solve for time and you get T=D/V
time in water is L/3.52 and time out of water is L/4.43
add them together and you get (4.43L+3.52L)/(15.59) = 7.95L/15.59
that value is your total time
divide you total distance (2L) by total time (7.95L/15.59) and the Ls cancel out and you get
(31.18)/(7.95) = 3.92 m/s = Average Speed
Explanation:
friction is the resistance that one surface or object encounters when moving over another. Due to gravity pulling everything down things need to friction in order to move
i hope this helps :/
Carbohydrates, in cellular respiration.