Answer:
B). 3.4 s
Explanation:
As we can see the graph is given between velocity and time
so here we can see that the velocity is changing here with time and initially for some time it moves with constant speed
Then it's speed decreases to next few second and then speed increases to its maximum value
The time after which velocity comes to its maximum value will reach after t = 3 s
so out of the all given options most correct option will be

When the image of a distant object is brought into focus of front of a person's retina, the defect is called: nearsightedness.
Answer:
'Daniela had a 5-meter head start, and Leonard caught up to her at 25 meters.'
Explanation:
hope that helps :)
The acceleration of gravity is inversely proportional to
the square of the distance from Earth's center.
The acceleration of gravity is 9.8 m/s² on the Earth's surface ...
6380 km from the center.
If the acceleration of gravity at 'h' is 4.9 m/s² ... 1/2 of what it is
on the surface, then the distance from the center is
(6380 x √2) = 9,023 km (rounded) ,
and 'h' is the distance above the surface
= (9,023 - 6,380) = 2,643 km (rounded) .
Answer:
Explanation:
Given equation is ,
x =t + 2 t³ ,
dx/dt = velocity ( v ) = 1 + 6 t²
a) kinetic energy = 1/2 m v² = .5 x 4 ( 1 + 6 t² )² = 2 ( 1 + 6 t²)²
b ) Acceleration = dv /dt = 12 t .
force( F ) = mass x acceleration = 4 x 12 t = 48 t
Power = force x velocity = 48 t x ( 1 + 6 t²). = 48 t + 288 t³ )
work done = ∫ F dx =∫ 48 t x( 1 + 6t² )dt ; = [48t²/2 + 48 x 6 x t³ /3 = 24 t² + 96 t³ )]₀² = 864 J