The following scenarios that accurately describes a
condition in which resonance can occur is vibrating tuning fork is struck and
begins to vibrate as the object used to strike it is placed away from the
tuning fork. The answer is letter B.
42) The sailboat travels east with velocity

, while the current moves south with speed

. Since the two velocities are perpendicular to each other, he resultant velocity will be given by the Pytagorean theorem:

and the direction is in between the two original directions, therefore south-east. So, the correct answer is
D) 42 mph southeast
43) Since the light moves by uniform motion, we can calculate the distance corresponding to one light year by using the basic relationship between velocity, space and time. In fact, we know the velocity:

and the time is one year, corresponding to:

therefore, the distance corresponding to one light year is:

Therefore, the correct answer is D.
44) For the purpose of the problem, we can assume that the light travels instantaneously from the flash to us (because the distances involved are very small), so the time between the flash and the thunder corresponds to the time it took for the sound to travel to us.
The speed of sound is

And since the time between the flash and the thunder is t=3 s, the distance is

Therefore, the correct answer is A) 3/5 mile.
Comets.
Small fragments of meteors, formed by ice and rock mixed consitute the comets.
Answer:
(a) λ = 4136 nm → infrared
(b) λ = 413.6 nm → visible light
(c) λ = 41.36 nm → ultraviolet
Explanation:
The wavelength of infrared is on the range of 700 nm to 1000000 nm
The wavelength of visible light is between 400 nm and 700 nm
The wavelength of ultraviolet ray on the range of 10 nm to 400 nm
The wavelength of photon is given by;
E = hf
f is the frequency of the wave = c / λ

Where;
c is the speed of light = 3 x 10⁸ m/s
h is Planck's constant = 6.626 x 10⁻³⁴ J/s
(a) 0.3 eV = 0.3 x 1.602 x 10⁻¹⁹ J

λ = 4136 x 10⁻⁹ m
λ = 4136 nm → infrared
(b) 3.0 eV

λ = 413.6 x 10⁻⁹ m
λ = 413.6 nm →visible light
(c) 30 eV

λ = 41.36 x 10⁻⁹ m
λ = 41.36 nm →ultraviolet
Answer:
0.0109 m ≈ 10.9 mm
Explanation:
proton speed = 1 * 10^6 m/s
radius in which the proton moves = 20 m
<u>determine the radius of the circle in which an electron would move </u>
we will apply the formula for calculating the centripetal force for both proton and electron ( Lorentz force formula)
For proton :
Mp*V^2 / rp = qp *VB ∴ rp = Mp*V / qP*B ---------- ( 1 )
For electron:
re = Me*V/ qE * B -------- ( 2 )
Next: take the ratio of equations 1 and 2
re / rp = Me / Mp ( note: qE = qP = 1.6 * 10^-19 C )
∴ re ( radius of the electron orbit )
= ( Me / Mp ) rp
= ( 9.1 * 10^-31 / 1.67 * 10^-27 ) 20
= ( 5.45 * 10^-4 ) * 20
= 0.0109 m ≈ 10.9 mm