Momentum = mass * velocity
p = mv
p = 1.5 kg * 40 ms^-1
p = 60 kgm/s
To find components of a vector:
px = p * cos(theta)
px = 60 * cos(30)
px = 51.96 = 52 (rounded to two significant digits)
py = p * sin(theta)
py = 60 * sin(30)
py = 30
He initial momentum is 60kgm/s
The horizontal component is 52 kgm/s
The vertical component is 30 kgm/s
Answer: 4 hours
Explanation: Their approach rate is 100+140 or 240 km/h and 960/240 which equals 4 hours
Answer:
a) 0.21N/C
b) counterclockwise
Explanation:
a) to find the magnitude of the electric field you can use the following formula:

A: area of the ring = pi*r^2
E: electric field
Ф_B: magnetic flux
In the line integral you can assume E as constant. Furthermore, you calculate the change in the magnetic flux by taking into account that the time interval is 1.12/0.21=5.33s. By replacing in the formula you obtain:


the magnitude if the induced electric field is 0.21N/C
b) By the Lenz's law you can conclude that the current has a direction in a counterclockwise
Answer:
12 mins
Explanation:
The distance covered is 5 km, divide this by 25 to get the fraction of an hour it takes. Doing this you get .2, times this by 60 min (1 hour) to get how many mins it takes