Answer:
the final speed of object A changed by a factor of
= 0.58
the final speed of object B changed by a factor of
= 1.29
Explanation:
Given;
kinetic energy of object A, = 27 J
let the mass of object A = 
then, the mass of object B = 
work done on object A = -18 J
work done on object B = -18 J
let
be the initial speed
let
be the final speed
For object A;


Thus, the final speed of object A changed by a factor of
= 0.58
To obtain the change in the final speed of object B, apply the following equations.


Thus, the final speed of object B changed by a factor of
= 1.29