1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oee [108]
3 years ago
12

Object A has 27 J of kinetic energy. Object B has one-quarter the mass of object A.

Physics
1 answer:
andreev551 [17]3 years ago
3 0

Answer:

the final speed of object A changed by a factor of  \frac{1}{\sqrt{3} } = 0.58

the final speed of object B changed by a factor of \sqrt{\frac{5}{3} } = 1.29

Explanation:

Given;

kinetic energy of object A, = 27 J

let the mass of object A = m_A

then, the mass of object B = m_B = \frac{m_A}{4}

work done on object A = -18 J

work done on object B = -18 J

let v_i be the initial speed

let v_f be the final speed

For object A;

K.E_A = 27\\\\\frac{1}{2} m_A v_i^2 = 27\\\\m_A v_i^2  = 54\\\\m_A = \frac{54}{v_i^2} ----Equation \ (1)\\\\Apply \ work-energy \ theorem;\\\\\delta K.E_A = -18\\\\\frac{1}{2} m_A v_f^2 - \frac{1}{2} m_A v_i^2 = -18\\\\\frac{1}{2} m_A ( v_f^2 \ -  v_i^2 )\ =- 18\\\\v_f^2 \ -  v_i^2  = -\frac{36}{m_A} ---Equation \ (2)\\\\v_f^2 \ -  v_i^2  = -\frac{36v_i^2}{54}\\\\ v_f^2 \ =v_i^2 - \frac{36v_i^2}{54}\\\\ v_f^2 = \frac{54v_i^2 -36v_i^2 }{54} \\\\v_f^2 = \frac{18v_i^2}{54} \\\\v_f^2 = \frac{v_i^2}{3} \\\\

v_f = \sqrt{\frac{v_i^2}{3} }\\\\v_f = \frac{1}{\sqrt{3} } \ v_i\\\\

Thus, the final speed of object A changed by a factor of  \frac{1}{\sqrt{3} } = 0.58

To obtain the change in the final speed of object B, apply the following equations.

K.E_B_i = \frac{1}{2} m_Bv_i^2\\\\m_B = \frac{m_A}{4} \\\\K.E_B_i = \frac{1}{2}(\frac{m_A}{4} )v_i^2\\\\K.E_B_i = \frac{m_Av_i^2}{8} \\\\But, \ m_Av_i^2 = 54 \\\\K.E_B_i = \frac{54}{8} \\\\Apply \ work-energy \ theorem ;\\\\\delta K.E = -18\\\\K.E_f -K.E_i = -18\\\\\frac{1}{2}m_Bv_f^2 - \frac{1}{2} m_Bv_i^2 = -18\\\\Recall \ m_B =  \frac{m_A}{4} \\\\\frac{1}{2}(\frac{m_A}{4} )v_f^2 - \frac{1}{2}(\frac{m_A}{4} )v_i^2 = -18\\\\\frac{1}{2}\times \frac{m_A}{4} (v_i^2 -v_f^2) = 18\\\\

\frac{1}{2}\times \frac{m_A}{4} (v_i^2 -v_f^2) = 18\\\\v_i^2 -v_f^2 = \frac{8}{m_A} \times 18\\\\v_i^2 -v_f^2 =\frac{144}{m_A} \\\\But , m_A = \frac{54}{v_i^2} \\\\v_i^2 -v_f^2 =\frac{144v_i^2}{54} \\\\v_f^2 = v_i^2 - \frac{144v_i^2}{54}\\\\v_f^2 = \frac{54v_i^2-144v_i^2}{54}\\\\ v_f^2 = \frac{-90v_i^2}{54} \\\\v_f^2 = \frac{-5v_i^2}{3} \\\\|v_f| = \sqrt{\frac{5v_i^2}{3}} \\\\|v_f| = \sqrt{\frac{5}{3}} \ v_i

Thus, the final speed of object B changed by a factor of \sqrt{\frac{5}{3} } = 1.29

You might be interested in
If 190 grams of water is cooled from 42.7°C to 21.2° C how much energy was lost by the water?
yanalaym [24]

Answer:

Energy lost by the water is 17.1 x 10³ J .

Explanation:

Specific heat is defined as the amount of energy per unit mass needed to raise the temperature of the substance by a one degree Celsius.

Heat energy gain or loss by any substance is given by :

Q = m x C x ( T₁ - T₂ )     .....(1)

Here m is the mass of the substance, C is specific heat of the substance and T₁ and T₂ are the initial and final temperature of the substance.

According to the problem,

Mass of water, m = 190 gm

Specific heat of water, C = 4.186 J gm⁻¹ ⁰C⁻¹

Initial temperature, T₁ = 42.7⁰ C

Final temperature, T₂ = 21.2⁰ C  

Substitute these values in equation (1).

Heat energy loss by water = 190 x 4.186 x ( 21.2 - 42.7 )

                                            =  -17.1 x 10³ J

In the above value, negative sign denotes the loss in energy.

7 0
3 years ago
You have gas in a container with a movable piston. The walls of the container are thin enough so that its temperature stays the
bearhunter [10]

Answer:

New pressure of the gas increases by 26.5% with respect to initial pressure, new volume decreases 27% with respect to initial volume and new temperature decreases 8% with respect to initial volume.

Explanation:

If we assume the gas is a perfect gas we can use the perfect gas equation:

PV=nRT

  • For Isothermal process:

\frac{P_{1}V_{1}}{T_{1}}=\frac{P_{2}V_{2}}{T_{2}}(1)

Where subscripts 1 shows before the isothermal process and 2 after it, because isothermal means constant temperature T1=T2, and pressure increases by 10% means P2=1,1*P1, using these facts on (1) we have:

V_{2}=\frac{V_{1}}{1.1} (2)

  • For Isobaric process:

\frac{P_{2}V_{2}}{T_{2}}=\frac{P_{3}V_{3}}{T_{3}} (3)

Where subscripts 2 shows before the isobaric process and 3 after it, because isobaric means constant pressure P2=P3, and volume decreases by 20% means V3=0.8*V2, using these facts on (3) we have:

T_{3}=0.8T_{2} (4)

  • For Isochoric process:

\frac{P_{3}V_{3}}{T_{3}}=\frac{P_{4}V_{4}}{T_{4}} (5)

Where subscripts 3 shows before the isochoric process and 4 after it, because isochoric means constant volume V3=V4, and temperature increases by 15% means T4=1.15*T3, using these facts on (5) we have:

P_{4}=1.15P_{3} (6)

So now because P4=1.15*P3, P2=P3 and P2=1.1*P1:

P_{4}=1.15*1.1P_{1}=1.265P1

This is, the new pressure of the gas increases by 26.5%  with respect to initial pressure.

Similarly, we have V3=V4, V3=0.8*V2 and V1=1,1*V2:

V_{4}=\frac{0.8}{1.1}V_{1}=0.72V1

so the final volume decreases 27% with respect to initial volume.

T4=1,15*T3, T3=0.8*T2 and T1=T2:

T_{4}=1.15*0.8T_{1}=0.92T1

The new temperature decreases 8% with respect to initial volume.

3 0
3 years ago
What is the volume of a bar of soap that is 9 cm long, 5 cm wide, and 2 cm high?
GalinKa [24]

Answer:

90cm

Explanation:

2x5=10

10x9=90

7 0
3 years ago
Read 2 more answers
Your mass in kilograms if you weight 170 pounds
Aleonysh [2.5K]
1 pound ≈ 0.4536 kg

170 pounds ≈ 170 * 0.4536 kg

                     ≈ 77.112 kg

                      
5 0
3 years ago
How many milligrams are equivalent to 150 dekagrams?
dybincka [34]
 i believe  the answer is 1.5e+6

hope this helps!

4 0
3 years ago
Read 2 more answers
Other questions:
  • One horsepower (1 hp) is the unit of power based on the work that a horse can do in one second. This is defined, in English unit
    12·1 answer
  • Name three gases in the atmosphere
    15·2 answers
  • A sample of gas has an initial volume of 4.5 L at a pressure of 754 mmHg . Part A If the volume of the gas is increased to 8.5 L
    8·1 answer
  • How does the thermosphere,(the outer most layer) help earth?
    7·1 answer
  • A glider of mass 0.240 kg is on a frictionless, horizontal track, attached to a horizontal spring of force constant 6.00 N/m. In
    14·1 answer
  • you push a book a distance of 5 meters with a force of 10 newtons for 2 seconds how much work did you do on the book
    14·1 answer
  • Which of the following are non-contact forces: friction, electrostatic force, magnetic force, gravity?
    13·2 answers
  • What happens after the president gives the budget to Congress?
    9·1 answer
  • Plzzzzzzzzzzzzz helppppp 20 points
    10·1 answer
  • A hollow cylinder is given a velocity of 5.3 m/s and rolls up an incline to a height of 2.87 m. If a hollow sphere of the same m
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!