Answer:
16200 J
Explanation:
t = Time the battery is on = 60 hours
I = Current =
Average voltage
Energy is given by
The energy delivered in the given time is 16200 J
Answer:
B. NET force: 2 resultant motion: left
ItsOniiSama avatar
C. Net force: 3 Resultant motion: Left
ItsOniiSama avatar
D. Net Force: 7 Resultant motion: right
ItsOniiSama avatar
E. Net Force:0 resultant motion: NO MOTION
ItsOniiSama avatar
F. NET Force: 3 resultant motion: Down
ItsOniiSama avatar
G. NET FORCE: 10 resultant motion: up
ItsOniiSama avatar
H. Net force: 3 Resultant motion: left
ItsOniiSama avatar
I. Net force: 50 Resultant motion: right
ItsOniiSama avatar
J. NET FORCE: 75 Resultant motion: down
ItsOniiSama avatar
K. Net force :200 Resultant motion: Right
ItsOniiSama avatar
L. Net force: 0 resultant motion:No motion
Explanation:
The answer is C. an electron in an orbit has a fixed energy.
The gravitional potential energy, relative to the bottom of the giant drop, in joules, is (9800) times (the height of the drop in meters).
That's the PE of the empty car only, not counting any hapless screaming souls who may be trapped in it at that moment.
Answer:
+7.0 m/s
Explanation:
Let's take rightward as positive direction.
So in this problem we have:
a = -2.5 m/s^2 acceleration due to the wind (negative because it is leftward)
t = 4 s time interval
v = -3.0 m/s is the final velocity (negative because it is leftward)
We can use the following equation:
v = u + at
Where u is the initial velocity
We want to find u, so if we rearrange the equation we find:
and the positive sign means the initial direction was rightward.