Answer:

Explanation:
For answer this we will use the law of the conservation of the angular momentum.

so:

where
is the moment of inertia of the merry-go-round,
is the initial angular velocity of the merry-go-round,
is the moment of inertia of the merry-go-round and the child together and
is the final angular velocity.
First, we will find the moment of inertia of the merry-go-round using:
I = 
I = 
I = 359.375 kg*m^2
Where
is the mass and R is the radio of the merry-go-round
Second, we will change the initial angular velocity to rad/s as:
W = 0.520*2
rad/s
W = 3.2672 rad/s
Third, we will find the moment of inertia of both after the collision:



Finally we replace all the data:

Solving for
:

Answer:
Y'now water vapor isn't half bad. It's like a vape but it can't affect your lungs. Anyway, Water vapor is water in gaseous instead of liquid form. It can be formed either through a process of evaporation or sublimation.
Gravity holds the system together
Answer: Find the answer in the explanation
Explanation: Given the Roman numeral and the representation
I. part of a coal-fired power plant
II. part of a nuclear power plant
III. part of a coal-fired power plant and part of a nuclear power plant
a.) Boiler : I
b.) Combustion chamber: I
c.) Condenser: I
d.) Control rod: II
e.) Generator: III
f.) Turbine: III
Toward the end processes part of both coal fire and nuclear power, they both make use of turbine and generator to generate electricity.
The metal conducts the heat, which makes cooking easier.