Answer:
C.) A high velocity and Large mass.
Explanation:
Momentum of any object is defined by following formula
Here
: m = mass of object
v = velocity of object
now we know that since momentum is product of mass and velocity
So in order to have more momentum we need the value of this product to be more. So this product will me large is both the physical quantity will be more in magnitude. So if mass is large and velocity will be more then the product of them will be large and hence the momentum of object will be more. Btw I had that question too.
Answer:
![r_{cm}=[12.73,12.73]cm](https://tex.z-dn.net/?f=r_%7Bcm%7D%3D%5B12.73%2C12.73%5Dcm)
Explanation:
The general equation to calculate the center of mass is:

Any differential of mass can be calculated as:
Where "a" is the radius of the circle and λ is the linear density of the wire.
The linear density is given by:

So, the differential of mass is:


Now we proceed to calculate X and Y coordinates of the center of mass separately:


Solving both integrals, we get:


Therefore, the position of the center of mass is:
![r_{cm}=[12.73,12.73]cm](https://tex.z-dn.net/?f=r_%7Bcm%7D%3D%5B12.73%2C12.73%5Dcm)
The right answer to this question is A. a crest that is toppling over. When a surfer rides an ocean wave on her surfboard, she is actually riding on a crest. The crest is the point on a wave with the maximum value or upward displacement within a cycle.
The angular speed is defined as:
<h2> ω=

</h2>
where


