Answer:
the distance from the location of the center of gravity to the location of the center o mass for this system is 1.13m
Explanation:
Given that
m₁=4.4kg
x₁=+1.1m
m₂=3.7kg
x₂=+0.80m
m₃=2.9kg
x₃=+1.6m
The position of the center of mass is
Xcm = [m₁x₁ +m₂x₂ +m₃x₃]/(m₁+m₂+m₃)
= [(4.40kg)(1.1 m)+(3.70 kg)(0.80 m)+(2.90 kg)(1.60 m)]/(4.4 kg + 3.70 kg+2.90 kg)
= 1.13 m
The position of the center of gravity is 1.13m
Therefore, the distance from the location of the center of gravity to the location of the center o mass for this system is 1.13m
Answer:
(b) Gravitational interactions with Jupiter
Explanation:
Gaps in the asteroid belt also known as Kirkwood Gaps are caused by the gravitational interaction between Jupiter and asteriods with Jupiter's orbital period. These Jupiter's orbital period occurs in a simple fraction, such as half, one-third, quarter etc.
Therefore, the correct option is "b" Gravitational interactions with Jupiter.
<h2>Answer: about the same size of the gap
</h2>
Diffraction happens when a wave (mechanical or electromagnetic wave, in fact, any wave) meets an obstacle or a slit .When this occurs, the wave bends around the corners of the obstacle or passes through the opening of the slit that acts as an obstacle, forming multiple patterns with the shape of the aperture of the slit.
Note that the principal condition for the occurrence of this phenomena is that <u>the obstacle must be comparable in size (similar size) to the size of the wavelength.
</u>
<u></u>
In other words, <u>when the gap (or slit) size is larger than the wavelength</u>, the wave passes through the gap and does not spread out much on the other side, but when the gap size is equal to the wavelength, maximum diffraction occurs and the waves spread out greatly.
Therefore:
<h2>
Waves diffract the most when their wavelength is <u>about the same size of the gap</u>
</h2>
Answer:
Value of 
Explanation:
We have given
In first case resistance is
and current is 1.8 A
Let the potential difference is v
So
----eqn 1
In second case resistance is
and current is 1.6 A and potential difference will be as it is a series connection
So
----eqn 2
From eqn 1 and eqn 2


an object moves along a straight line, the distance travelled can be represented by a distance-time graph. In a distance-time graph, the gradient of the line is equal to the speed of the object. The greater the gradient (and the steeper the line) the faster the object is moving