Answer:
thick, insulating fur
Explanation:
If an animal lives in a freezing climate, it makes sense logically that the animal would adapt and develop a layer of thick fur to keep its body insulated and maintain homeostasis.
Hope this helped and please consider a Brainliest! :)
The sample of smoke described above can be described as a heterogeneous mixture. This type of mixture do not have uniform properties and composition. So, getting a certain small sample would not represent the whole mixture since it does not have uniform composition.
The answer is D, far apart and have weak attractive forces between them. The ideal gas means that the volume of molecule and the forces between them can be ignored.
Answer:
pH = 9.48
Explanation:
We have first to realize that NH₃ is a weak base:
NH₃ + H₂O ⇔ NH₄⁺ + OH⁻ Kb = 1.8 x 10⁻⁵
and we are adding this weak base to a solution of NH₄NO₃ which being a salt dissociates 100 % in water.
Effectively what we have here is a buffer of a weak base and its conjugate acid. Therefore, we need the Henderson-Hasselbach formula for weak bases given by:
pOH = pKb + log ( [ conjugate acid ] / [ weak base ]
mol NH₃ = 0.139 L x 0.39 M = 0.054 mol
mol NH₄⁺ = 0.169 L x 0.19 M = 0.032 mol
Now we have all the information required to calculate the pOH ( Note that we dont have to calculate the concentrations since in the formula they are a ratio and the volume will cancel out)
pOH = -log(1.8 x 10⁻⁵) + log ( 0.032/0.054) = 4.52
pOH + pH = 14 ⇒ pH = 14 - 4.52 = 9.48
The solution is basic which agrees with NH₃ being a weak base.
Answer:
Explanation:
This question seeks to test the knowledge of separation techniques.
From the narration in the question, the first separation to be done is the removal of Iron fillings by the use of magnet (magnetic separation). Since Iron is magnetic, the iron fillings will be attracted by the magnet hence removing the iron fillings from the mixture.
The second constituent to be removed will be the copper pieces by the use of a sieve (sieving). Copper pieces have relatively larger sizes than sand and common salt, hence a sieve (which separates particles based on size) can be used to remove the copper pieces from the mixture.
What will be left in the mixture after the processes above will be salt and water. This mixture will have to be dissolved in water; the salt will dissolve in water while the sand will not. After which, filtration will be done to remove the sand which will be collected on the filter paper as filtride and the salt solution will pass through the filter paper as filtrate.
The salt solution can then be evaporated to dryness to retrieve the solid salt from the solution.
The amount of salt in the mixture can then be measured using a weighing balance.
Some of safety measures to be taken during the course of this experiment includes performing the experiment in an airtight and controlled environment. Lab coat and hand gloves should be worn during the course of the experiment. The evaporation to dryness should not be done close to an inflammable material/substance