<h3><u>Answer;</u></h3>
Directly proportional
<h3><u>Explanation;</u></h3>
- <em><u>Concentration is one of the factors that determine the rate of a reaction. Reaction rates increases with increase in the concentration of the reactants, which means they are directly proportional.</u></em>
- An increase in the concentration of reactants produces more collisions and thus increasing the rate at which the reaction is taking place. Therefore, <u>Increasing the concentration of a reactant increases the frequency of collisions between reactants and will cause an increase in the rate of reaction.</u>
Answer:
Name the element: Beryllium
Number of shells: 4
Valence electrons: 2
Explanation:
The integrated rate law for a second-order reaction is given by:
![\frac{1}{[A]t} = \frac{1}{[A]0} + kt](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%5BA%5Dt%7D%20%3D%20%20%20%5Cfrac%7B1%7D%7B%5BA%5D0%7D%20%2B%20kt%20)
where, [A]t= the concentration of A at time t,
[A]0= the concentration of A at time t=0
<span>k =</span> the rate constant for the reaction
<u>Given</u>: [A]0= 4 M, k = 0.0265 m–1min–1 and t = 180.0 min
Hence, ![\frac{1}{[A]t} = \frac{1}{4} + (0.0265 X 180)](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%5BA%5Dt%7D%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%2B%20%280.0265%20X%20180%29%20)
<span> = 4.858</span>
<span><span><span>Therefore, [A]</span>t</span>= 0.2058 M.</span>
<span>
</span>
<span>Answer: C</span>oncentration of A, after 180 min, is 0.2058 M
The relation between the volume and the temperature of the gas is given by Charles's law. The final temperature of the gas at 0.75 liters is -193.8°C.
<h3>What is Charles's law?</h3>
Charles's law was derived from the ideal gas equation and is used to state the relationship between the temperature and the volume of the gas. With a decrease in volume the temperature decreases.
If the pressure is kept constant then with an increase in temperature the volume of the gas expands. The law is given as,
V₁ ÷ T₁ = V₂ ÷ T₂
Given,
Initial volume (V₁) = 2.80 L
Initial temperature (T₁) = 23 °C = 296.15 K
Final volume (V₂) = 0.75 L
Final temperature = T₂
Substituting the values above as:
T₂ = (V₂ × T₁) ÷ V₁
= 0.75 × 296.15 ÷ 2.80
= 79.325 K
Kelvin is converted as, 79.325K − 273.15 = -193.8°C
Therefore, the final temperature is -193.8°C.
Learn more about Charle's law, here:
brainly.com/question/16927784
#SPJ1
An inter-molecular power is basically an alluring power between neighboring particles. There are three regular sorts of inter-molecular power: lasting dipole-dipole powers, hydrogen bonds and van der Waals' powers.