Answer:
by statistical analyses, especially by determining the p-value
Explanation:
In general, observations and results obtained from experimental procedures are subjected to a statistical test to check the robustness of the working hypothesis. The p-value is the most widely used statistical index in order to test such observations and results. The p-value is the statistical probability of obtaining extreme observed results when the null hypothesis is considered correct. A p-value lesser than 0.05 generally is considered statistically significant and then the null hypothesis can be rejected. In consequence, a very low p-value (which is obtained by statistical analysis of the observations and results), indicates that there is strong evidence in support of the alternative hypothesis.
Answer:
Repeated SN2 reactions occur leading to the formation of a racemic mixture
Explanation:
S-2-iodooctane is a chiral alkyl halide with an asymmetric carbon atom. The presence of an asymmetric carbon atom implies that it can rotate plane polarized light and thus lead to optical isomerism. The two configurations of the compound are R/S according to the Cahn-Prelong-Ingold system.
However, when S-2-iodooctane is treated with sodium iodide in acetone, repeated SN2 reactions occur since the iodide ion is both a good nucleophile and a good leaving group. Hence a racemic modification is formed in the system with time hence we end up with (±)- Iodooctane.
It would be considered a Homogeneous Mixture. A mixture with two or more components mixed evenly is a Homogeneous mixture.
Answer:
grass
Explanation:
it is a plant, hope this helps
Answer:
<u />
<u />
<u />
Explanation:
<u>1. Chemical balanced equation (given)</u>

<u>2. Mole ratio</u>

This is, 1 mol of NaOH will reacts with 1 mol of KHP.
<u />
<u>3. Find the number of moles in 72.14 mL of the base</u>



<u>4. Find the number of grams of KHP that reacted</u>
The number of moles of KHP that reacted is equal to the number of moles of NaOH, 0.007055 mol
Convert moles to grams:
- mass = number moles × molar mass = 0.007055mol × 204.23g/mol
You have to round to 3 significant figures: 1.44 g (because the molarity is given with 3 significant figures).
<u>5. Find the percentage of KHP in the sample</u>
The percentage is how much of the substance is in 100 parts of the sample.
The formula is:
- % = (mass of substance / mass of sample) × 100
- % = (1.4408g/ 1.864g) × 100 = 77.3%