Formula: % by mass = (mass of solute / mass of solution] *100
Data:
mass of solution = 80.85 g
% by mass = 22.4%
Unknown = mass of solute
Solution
% by mass = (mass of solute / mass of solution] *100 = >
mass of solute = % by mass * mass of solution / 100
mass of solute = 22.4 * 80.85 / 100 = 18.11 g
Answer: 18.11 g
Answer:
The answer to this is
The velocity of the 27.3Kg marble after collision is = 16.24 cm/s
Explanation:
To solve the question, let us list out the given variables and their values
Mass of first marble m1 = 27.3g
Velocity of the first marble v1 = 21.0 cm/s
Mass of second marble m2 = 11.7g
Velocity of the second marble v2 = 12.6 cm/s
After collision va1 = unknown and va2 = 23.7 cm/s
From Newton's second law of motion, force = rate of change of momentum produced
Hence m1v1 + m2v2 = m1va1 + m2va2 or
va1 = (m1v1 + m2v2 - m2va2)÷m2 or (720. 72-277.29)÷m1 → va1 = 16.24 cm/s
The velocity of the 27.3Kg marble after collision is = 16.24 cm/s
100 times less H+
A solution at ph 10 contains<u> </u><u>100 times less H+</u> than the same amount of solution at ph 8.
<h3>The pH scale: How does it function?</h3>
- The pH scale determines how acidic or basic water is.
- The range is 0 to 14, with 7 representing neutrality.
- Acidity is indicated by pH values below 7, whereas baseness is shown by pH values above 7.
- In reality, pH is a measurement of the proportion of free hydrogen and hydroxyl ions in water.
<h3>How does the pH change when two acids are combined?</h3>
- An acid's strength increases with the quantity of hydrogen ions it releases.
- The pH of the strong acids is between 1 and 2.
- We may observe that there is no response when two acids of the same strength are combined.
- It's because the end product will be neutral and the pH won't change.
<h3>How is pH value determined?</h3>
There are two ways to measure pH:
- colorimetrically with indicator fluids or sheets
- electrochemically with electrodes and a millivoltmeter for greater accuracy (pH meter).
To learn more about pH visit:
brainly.com/question/491373
#SPJ4