Answer:
<h2>0.67 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>0.67 m/s²</h3>
Hope this helps you
Answer:
C) 7.35*10⁶ N/C radially outward
Explanation:
- If we apply the Gauss'law, to a spherical gaussian surface with radius r=7 cm, due to the symmetry, the electric field must be normal to the surface, and equal at all points along it.
- So, we can write the following equation:

- As the electric field must be zero inside the conducting spherical shell, this means that the charge enclosed by a spherical gaussian surface of a radius between 4 and 5 cm, must be zero too.
- So, the +8 μC charge of the solid conducting sphere of radius 2cm, must be compensated by an equal and opposite charge on the inner surface of the conducting shell of total charge -4 μC.
- So, on the outer surface of the shell there must be a charge that be the difference between them:

- Replacing in (1) A = 4*π*ε₀, and Qenc = +4 μC, we can find the value of E, as follows:

- As the charge that produces this electric field is positive, and the electric field has the same direction as the one taken by a positive test charge under the influence of this field, the direction of the field is radially outward, away from the positive charge.
A. Impulse is simply the product of Force and time.
Therefore,
I = F * t --->
1
where I is impulse, F is force, t is time
However another formula for solving impulse is:
I = m vf – m vi --->
2
where m is mass, vf is final velocity and vi is initial
velocity
Therefore using equation 2 to solve for impulse I:
I = 2000kg (0) – 2000kg (77 m/s)
I = -154,000 kg m/s
B. By conservation of momentum, we also know that Impulse
is conserved. That means that increasing the time by a factor of 3 would still
result in an impuse of -154,000 kg m/s. So,
I = F’ * (3 t) = -154,000 kg m/s
Since t is multiplied by 3, therefore this only means
that Force is decreased by a factor of 3 to keep the impulse constant,
therefore:
(F/3) (3t) = -154,000 kg m/s
Summary of Answers:
A. I = -154,000 kg m/s
B. Force is decreased by factor of 3
Answer:
Rocket Center of Gravity. As a rocket flies through the air, it both translates and rotates. The rotation occurs about a point called the center of gravity. The center of gravity is the average location of the weight of the rocket.
Answer:
(a) The impedance in the circuit is
.
(b)The resistance is
.
(c) The inuctance is 0.57 H.
Explanation:
(a)
The expression for the impedance is as follows:

Here,
is the rms voltage and
is the rms current.
Put
and
.


Therefore, the impedance in the circuit is
.
(b)
The expression for the average power is as follows;

Here,
is the average power and R is the resistance.
Calculate the resistance by rearranging the above expression.

Put
and


Therefore, the resistance is
.
(c)
The expression for the impedance is as follows;

Here,
is the inductive reactance.
Put
and
.


The expression for the inductive reactance in terms of frequency is as follows;

Here, L is the inductance.
Calculate the inductance by rearranging the above expression.

Put
and f=50Hz.

L=0.57 H
Therefore, the inuctance is 0.57 H.