Answer:
c. Smaller than.
Explanation:
The energy stored in a capacitor is given as
E = 1/2CV²...................... Equation 1
Where E = Energy stored in a capacitor, C = capacitance of the capacitor, V = Voltage.
Also,
C = εA/d ......................Equation 2
Where ε = permitivity of the material, A = cross-sectional area of the plate, d = distance of separation of the plate.
substitute equation 2 into equation 1
E = 1/2εAV²/d ................. Equation 3
From equation 3 above,
The energy stored in a capacitor is inversely proportional to the distance of separation between the plates.
Hence when the plate is pulled apart by a distance D (D>d) The energy stored in the capacitor will be smaller.
The right option is c. Smaller than.
If we are talking on the force being exerted by a segment of a rope of lenght R on the right on a point M which is being also pulled from the Left by a segment of rope R as shown in the figure attached. Then we invoke Newton's Third Law:
"Any force exerted by an object (in this case a segment of the rope) also suffers a equal and opposite force".
If we pick

whis is the tension exerted by the right segment then the left segment will also exert an equal and opposite force so we have that
Translation of important question part (Google translation used)
Force of 6N causes a displacement of 0.03m. remove the balance and connect a body 0.5 kg to the end, pull it to move it 0.02 m, release it and see how it oscillates.
(a)Determine the spring constant.
(b)Calculate angular velocity, frequency, and oscillation period
Answer:
(a)K=200 N/m
(b) w= 20 rad/s f=3.2 Hz T=0.3125 s
Explanation:
(a)
From Hooke's law, we deduce that F=kx where F is applied force, k is spring constant and x is extension of the spring. Making k the subject of the formula then k=F/x and substituting F with 6 N and x with 0.03 m then k=6/0.03=200 N/m
(b)
Angular velocity, w is given by
where m is the mass and k is spring constant calculated in part a above. Substituting mass with 0.5 kg and k with 200 N/m then

We know that frequency, f is given by
and substituting 20 rad/s for w then
Finally, oscillation period, T is usually the reciprocal of frequency hence T=1/f and substituting f with 3.2 Hz then T=1/3.2=0.3125 s
The types of meteorites are iron, stone and iron-stony
meteorites. The stony-iron meteorites account for less than 2% of all known
meteorites. They comprised of roughly equal amounts of nickel-iron and stone
and are divided into two groups: pallasites and mesosiderites. The answers are
only B and C
Explanation:
The formula for density is d = M/V, where d is density, M is mass, and V is volume. Density is commonly expressed in units of grams per cubic centimetre. For example, the density of water is 1 gram per cubic centimetre, and Earth's density is 5.51 grams per cubic centimetre.