The the object that has the less mass will travel faster because let’s say for example the first object has the mass of M and the second object has the mass of 2M and if the momentum is equal so that means that we could divide M with M and we would get V1=2V2 (being V1 the velocity of the first mass and V2 the velocity of the second one) I hope I helped you out.
Answer:
<em> The planes average acceleration in magnitude and direction = 8.846 m/s² moving east</em>
Explanation:
Acceleration: This can be defined as the rate of change of velocity. The S.I Unit of acceleration is m/s². Acceleration is a vector quantity because it can be represented both in magnitude and in direction.
Acceleration can be represented mathematically as
a = v/t.................................... Equation 1
Where a = acceleration, v = velocity, t= time.
<em>Given: v = 115 m/s, t = 13.0 s</em>
<em>Substituting these values into equation 1</em>
<em>a = 115/13</em>
<em>a = 8.846 m/s² moving east</em>
<em>Thus the planes average acceleration in magnitude and direction = 8.846 m/s² moving east</em>
Answer:
The charge on the third object is − 21.7nC
Explanation:
From Gauss's Law
Φ = Q/ε₀
where;
Φ is the total electric flux through the shell = − 533 N⋅m²/C
Q is the total charge Q in the shell = ?
ε₀ is the permittivity of free space = 8.85 x 10⁻¹²
From this equation; Φ = Q/ε₀
Q = Φ * ε₀ = − 533 * 8.85 x 10⁻¹²
Q = −4.7 X 10⁻⁹ C = -4.7nC
Q = q₁ + q₂ + q₃
− 4.7nC = − 14.0 nC + 31.0 nC + q₃
− 4.7nC − 17nC = q₃
− 21.7nC = q₃
Therefore, the charge on the third object is − 21.7nC
Hey! So referring to the data the thing we can clearly see is that in a vacuum, everything, regardless of its mass, falls at the same speed.
Acceleration is often confused with speed, or velocity, but the difference is, acceleration by definition is the rate of which an object falls with respect to its mass and time.
Every single thing in the world falls at the same acceleration, this is because of gravity. The difference is the speed of which it falls. In space, there is not any gravity, and so, the objects are able to fall at the same speed regardless of their mass.