Answer:
The unit for power is the Watt
Question: 18 kilogram Mass Block rest on level surface if the coefficient of static friction between the Block and the surface is 0.6 what horizontal force is required to just move the blcok ( take gravity as 10m/s2
)
Answer:
108 N
Explanation:
From the question,
Applying
F' = mgμ................ Equation 1
Where F' = Frictional force = horizontal force required to just move the block, m = mass of the block, g = acceleration due to gravity, μ = coefficient of static friction.
From the question,
Given: m = 18 kg, μ = 0.6, g = 10 m/s²
Substitute these values into equation 1
F' = 18×0.6×10
F' = 108 N
Answer:
Without any external forces a moving object will continue to move in a straight line. The gravitational force between the two objects will provide the centripetal force to keep the objects moving around one another.
1. satellite in orbit around the earth (motion of earth is negligible)
2. moon in orbit around the earth (center of motion several thousand miles
from center of earth)
3. earth in orbit around sun (center of rotation close to center of sun)
4. binary stars (if masses of stars are equal center of rotation is in middle)
Answer:
B. The buoyant force on the copper block is greater than the buoyant force on the lead block.
Explanation:
Given;
mass of lead block, m₁ = 200 g = 0.2 kg
mass of copper block, m₂ = 200 g = 0.2 kg
density of water, ρ = 1 g/cm³
density of lead block, ρ₁ = 11.34 g/cm³
density of copper block, ρ₂ = 8.96 g/cm³
The buoyant force on each block is calculated as;

The buoyant force of lead block;

The buoyant force of copper block

Therefore, the buoyant force on the copper block is greater than the buoyant force on the lead block