Since it was dropped, it should be the speed of gravity which is 9.8 meters/second
Answer:
the wagon should be used as frame of reference if an observer said the child was not moving.
Explanation:
The state of motion of a body depends upon the frame of reference. It is the set of co-ordinates according to which the motion is analyzed. If a child is riding in a wagon, then he will be considered in motion to a person standing outside the wagon. Hence, if we take a frame of reference outside the wagon then the child must be in motion with respect to the observer. On the other hand if the observer is inside the wagon, then the child must be in rest with respect to the observer. Hence, if we take the wagon to be the frame of reference, then the child will be at rest with respect to the observer.
<u>Therefore, the wagon should be used as frame of reference if an observer said the child was not moving.</u>
Forces affect how objects move. They may cause motion; they may also slow, stop, or change the direction of motion of an object that is already moving. Since force cause changes in the speed or direction of an object, we can say that forces cause changes in velocity. Remember that acceleration is a change in velocity.
Answer:
Earth's crust is covered by a densed air blanket called atmosphere. Due to which we feel warm even during night when there is no sun. The air near the atmosphere is less dense compared to the air near our crust. Similarly we can experience high pressure near the atmosphere comparelatively we experience less pressure near crust. The presence of atmosphere above us makes the wind fair sometimes stromy and also helps in pteperation of wind and breezes in earth's surface.
Answer:
The electron’s wavefunction has at least one node (i.e., at least one place in space where it goes to zero).
Explanation:
We know that the p-orbitals have nodes. A node is a region where the probability of finding an electron goes down to zero.
P orbitals are oriented along the x,y,z Cartesian axes and are known to have angular nodes along the axes.
Hence, if an electron in a hydrogen atom is in a p state, the electron’s wavefunction has at least one node