Answer:
7.6 g
Explanation:
"Well lagged" means insulated, so there's no heat transfer between the calorimeter and the surroundings.
The heat gained by the copper, water, and ice = the heat lost by the steam
Heat gained by the copper:
q = mCΔT
q = (120 g) (0.40 J/g/K) (40°C − 0°C)
q = 1920 J
Heat gained by the water:
q = mCΔT
q = (70 g) (4.2 J/g/K) (40°C − 0°C)
q = 11760 J
Heat gained by the ice:
q = mL + mCΔT
q = (10 g) (320 J/g) + (10 g) (4.2 J/g/K) (40°C − 0°C)
q = 4880 J
Heat lost by the steam:
q = mL + mCΔT
q = m (2200 J/g) + m (4.2 J/g/K) (100°C − 40°C)
q = 2452 J/g m
Plugging the values into the equation:
1920 J + 11760 J + 4880 J = 2452 J/g m
18560 J = 2452 J/g m
m = 7.6 g
Answer:
<u>Resolving</u><u> </u><u>horizontally</u><u>.</u> :

therefore, for resultant:

substitute:

-2/5 = 11k - k
-2/5 = 10k
-2/5/10 = k
-2/5 * 10 = k
-2/50 = k
k = -1/25.
-1/25 - 2/5 = 11k is true.
Answer:
Word for the first blank: gravity
Word for the second blank: matter
Explanation:
The only way debris from the impact with Earth can be held close to Earth is due to a force. The only force that could be acting from Earth is "the force of gravity".
The gravitational pull of this new object being formed, increases proportional to its mass as more and more "matter" accumulates. And the accretion process is now on its way.
The strength of electric field E is 17 N / C.
<u />
<u>Explanation:</u>
Electric field strength is defined as the force per unit charge acting at a point in the given field. The equation for the strength of the electric field is given by
E = F / q
where E represents the electric field strength,
F represents the force in newton,
q represents the charge in coulomb.
Given the charge q = 0.30 coulombs
force F = 5.0 N
Electric field strength E = force / charge
= 5.0 / 0.30
E = 16.66 = 17 N / C.