Answer:
0.5 × 10²³ atoms of iodine
Explanation:
Given data:
Mass of calcium iodide = 12.75 g
Number of atoms of iodine = ?
Solution:
First of all we will calculate the number of moles of calcium iodide.
Number of moles = mass/ molar mass
Number of moles = 12.75 g/ 293.9 g/mol
Number of moles = 0.04 mol
In one mole of calcium iodide there are two moles of iodine.
Thus in 0.04 moles:
0.04 mol × 2 = 0.08 moles of iodine
Now we will use the Avogadro number:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ atoms
0.08 moles of iodine × 6.022 × 10²³ atoms / 1 mol
0.5 × 10²³ atoms of iodine.
The simplest ion that copper forms in solution is the typical blue hexaaquacopper(II) ion - [Cu(H2O)6]<span>2+</span>
Explanation:
I'll give you a real answer later need points for test questions sorry
Because negatives are on the left and positives are on the right , if it was .0100 +x it would move to the right since +x implies that the x is positive.
Answer:
a. 92.4%
Explanation:
Based on the reaction:
2Na₃(CO₃)(HCO₃)·2H₂O(s) → 3Na₂CO₃(s) + CO₂(g) + 5H₂O(g)
To obtain the percent yield you need to obtain moles of trona and calculate thoeretical moles of Na₂CO₃, and the ratio of obtained moles / theoretical moles of Na₂CO₃ give percent yield, thus:
Moles of trona:
1.00 metric ton × (1x10³kg / 1 metric ton) × ( 1000moles /226.03 kg) = <em>4424 moles</em>
The theoretical moles of Na₂CO₃ that produce 4424 moles of trona are (Based on the reaction, 2 moles of trona produce 3 moles of Na₂CO₃):
4424 moles trona × (3 moles Na₂CO₃ / 2 moles trona) = <em>6636 moles of Na₂CO₃.</em>
The obtained moles of Na₂CO₃:
0.650 metric ton × (1x10³kg / 1 metric ton) × (1000 moles / 105.99kg) = <em>6133 moles</em>
The ratio of obtained moles / theoretical moles gives:
6133 moles / 6636 moles = 0.924 = <em>92.4%</em>
I hope it helps!