Answer:
None of the above
Explanation:
When energy is converted from one form to another in a chemical or physical change, none will change. This is due to the law of conservation of energy. It states that the total energy of the system remains constant. It only changes energy from one form of energy to another. So, the correct option is (d) "none of the above".
Answer:
16.1 m/s
Explanation:
We can solve the problem by using the law of conservation of energy.
At the beginning, the spring is compressed by x = 35 cm = 0.35 m, and it stores an elastic potential energy given by

where k = 316 N/m is the spring constant. Once the block is released, the spring returns to its natural length and all its elastic potential energy is converted into kinetic energy of the block (which starts moving). This kinetic energy is equal to

where m = 0.15 kg is the mass of the block and v is its speed.
Since the energy must be conserved, we can equate the initial elastic energy of the spring to the final kinetic energy of the block, and from the equation we obtain we can find the speed of the block:

Answer:
The moment of inertia of the bar is 
Explanation:
Given that,
mass of bar = 150 g
Length l = 36 cm
We need to calculate the moment of inertia of the bar
Using formula of moment inertia

Where,
M = mass of the bar
L = length of the bar
Put the value into the formula


Hence, The moment of inertia of the bar is 
1) If the object changes directions with the same speed, it will be changing its velocity, because velocity is a vector, which depends on both magnitude and direction. Speed is just magnitude regardless of direction.
2) Rotational motion.
Explanation:
Buoyancy force is equal to the weight of the displaced fluid:
B = ρVg
where ρ is the density of the fluid,
V is the volume of the displaced fluid,
and g is the acceleration due to gravity.
The fluid is water, so ρ = 1000 kg/m³.
The volume displaced is that of a sphere with radius 2 m:
V = 4/3 π r³
V = 4/3 π (2 m)³
V ≈ 33.5 m³
The buoyancy force is therefore:
B = (1000 kg/m³) (33.5 m³) (9.8 m/s²)
B ≈ 328,400 N
Round as needed.